首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalase (fromAspergillus niger) has been immobilized by a chemical method on the pous SiO2 modified with γ-aminopropyltrietoxysilane, followed with glutaraldehyde and by a physical method in alginate and γ-carrageenan gel. Optimum support:enzyme ratios and pH values were determined for modified SiO2 in a series of immobilization reactions of catalase in the presence of the crosslinking agent glutaraldehyde, and for alginate and γ-carrageenan in the presence of hemoglobin and bovine serum albimine. pH and temperaturedependent activity variations and the stability properties of immobilized catalase preparations were investigated. Rate constants for H2O2 decomposition and catalase deactivation were determined. The decomposition rate of H2O2 used in the cold pasteurizatioan of milk were investigated in a discontinuous batch type reactor system. Activity half-lives of immobilized catalase were determined.  相似文献   

2.
2-Amino-4-chloro-s-triazine, a derivative of DEAE-cellulose, and acrolein/styrene copolymer were used as supports for the immobilization of glucose oxidase and catalase after being modified with diaminohexane followed by glutaraldehyde. Immobilization was carried out with optimum glucose oxidase-catalase ratios. The activity variations of the immobilized dual-enzyme systems were investigated in relation to pH and temperature. Time-dependent gluconic acid production resulting from the oxidation of glucose was monitored in a recycling fluid-bed reactor. The deactivation rates of glucose oxidase and catalase were investigated according to the first-order reaction kinetics depending on the presence of the intermediate product H2O2.  相似文献   

3.
金复合介孔SBA-15吸附血红蛋白在H2O2电催化反应中的应用   总被引:2,自引:0,他引:2  
周丽绘  鲜跃仲  周宇艳  胡军  刘洪来 《化学学报》2005,63(23):2117-2120
以P123嵌段共聚物表面活性剂为模板剂制备介孔氧化硅SBA-15,并用沉积-沉淀(DP)法在SBA-15介孔表面负载纳米Au颗粒制备得到金复合介孔SBA-15材料(Au-SBA-15).再以Au-SBA-15材料制备玻碳修饰电极,将血红蛋白固定于修饰电极上用循环伏安法考察其对不同浓度H2O2溶液的电催化反应.在固定了血红蛋白的Hb/Au-SBA-15/GC修饰电极上,H2O2在+0.95 V处出现了氧化峰,且随着H2O2浓度的增大峰电流不断增加,说明金复合介孔氧化硅材料具有良好的生物兼容性,有利于血红蛋白的固定,其修饰电极对H2O2溶液具有一定的电催化作用.  相似文献   

4.
We have discovered a new competitive pathway for O2 sensitivity in algal H2 production that is distinct from the O2 sensitivity of hydrogenase per se. This O2 sensitivity is apparently linked to the photosynthetic H2 production pathway that is coupled to proton translocation across the thylakoid membrane. Addition of the proton uncoupler carbonyl cyanide-p-trifluoromethoxy-phenylhydrazone eliminates this mode of O2 inhibition on H2 photoevolution. This newly discovered inhibition is most likely owing to background O2 that apparently serves as a terminal electron acceptor in competition with the H2 production pathway for photosynthetically generated electrons from water splitting. This O2-sensitive H2 production electron transport pathway was inhibited by 3[3,4-dichlorophenyl]1,1-dimethylurea. Our experiments demonstrated that this new pathway is more sensitive to O2 than the traditionally known O2 sensitivity of hydrogenase. This discovery provides new insight into the mechanism of O2 inactivation of hydrogenase and may contribute to the development of a more-efficient and robust system for photosynthetic H2 production.  相似文献   

5.
A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant Km was estimated to be 2.21 mM. The detection of H2O2 concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration.  相似文献   

6.
利用ITO基底上层层组装构建的多层内嵌银纳米粒子的磷酸钛薄膜固定了血红蛋白并且用于生物传感研究。由于银纳米粒子与磷酸钛膜的协同作用,实验中可以观察到Hb的直接电子传递。研究表明所制备的Hb-Ag-TiP/PDDA/ITO电极对H2O2响应迅速、稳定,检测限达3.3×10-6 mol·L-1。  相似文献   

7.
Sulfuric acid immobilized on silica gel (H2SO4-SiO2) was used as an efficient promoter for per-O-acetylation of carbohydrates with acetic anhydride under solvent-free conditions. The substrates include not only monosaccharides and disaccharides, but also glycosides. The catalyst is recyclable and stable at room temperature, and the reaction protocol is simple, is cost-effective, and gives good isolated yield with high purity. The large-scale reactions also proceeded conveniently and in high yields.  相似文献   

8.
Hydrogen peroxide (H2O2) is popularly employed as a reaction reagent in cleaning processes for the chemical industry and semiconductor plants. By using differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2), this study focused on the thermal decomposition reaction of H2O2 mixed with sulfuric acid (H2SO4) with low (0.1, 0.5 and 1.0 N), and high concentrations of 96 mass%, respectively. Thermokinetic data, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), pressure rise rate (dP/dt), and self-heating rate (dT/dt), were obtained and assessed by the DSC and VSP2 experiments. From the thermal decomposition reaction on various concentrations of H2SO4, the experimental data of T 0, ΔH, dP/dt, and dT/dt were obtained. Comparisons of the reactivity for H2O2 and H2O2 mixed with H2SO4 (lower and higher concentrations) were evaluated to corroborate the decomposition reaction in these systems.  相似文献   

9.
The catalytic behaviors of Pd (1.4 wt%) catalysts supported on CeO2-ZrO2-La2O3 mixed oxides with different Ce/Zr molar ratios were investigated for methanol decomposition. Nitrogen adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD) and Pd dispersion analysis were used for their characterization. Pd/Ce0.76Zr0.18 La0.06O1.97 catalyst showed the highest BET surface area, best Pd dispersion capability and strongest metal-support interaction. Moreover, XPS showed that there was lattice defect oxygen or mobile oxygen. According to the result of O 1s measurements the lattice defect oxygen or mobile oxygen helped to maintain Pd in a partly oxidized state and increased the activity for methanol decomposition. The Pd/Ce0.76Zr0.18La0.06O1.97 catalyst exhibited the best activity. A 100% conversion of methanol was achieved at around 260 °C, which was about 20-40 °C lower than other catalysts  相似文献   

10.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

11.
《Analytical letters》2012,45(14):2664-2672
Abstract

Direct electrochemistry of the myoglobin‐triacetone triperoxide (Mb‐TATP) composite on carbon paste (CP) electrode is reported. This electrode gives a well‐defined and quasi‐reversible cyclic voltammogram for the Mb FeIII/FeII redox coupled with the formal potential (E?′) of ?0.302 V (vs. Ag/AgCl) in pH 6.92 phosphate buffer. Electronic and vibrational spectroscopies show that the Mb in the composite retains a structure similar to its native form. The enzymatic reactivity to the reduction of H2O2 has been studied for the Mb‐TATP film. The analytical performances have been obtained with the linear range of 78.32–1135.64 µM, the detection limit of 55 µM (S/N=3), and the apparent Michaelis‐Menten constant (K m) of 662.8 µM. This H2O2 biosensor based on the electrocatalysis of the immobilized Mb presents a higher stability within two weeks.  相似文献   

12.
Ni-La2O3-SiO2 catalysts were prepared by wetness impregnation and sol-gel method followed by conventional drying and supercritical drying, respectively. Their physico-chemical properties and activity for the hydrogenation of m-dinitrobenzene to m-phenylenediamine were investigated by BET, XRD, TPR, H2-TPD and activity tests. The results showed that the structural and catalytic properties of the Ni-La2O3-SiO2 catalysts obviously depended on the preparation method and the drying mode. The catalyst prepared by the sol-gel method in combination with conventional drying exhibited the highest catalytic activity among the catalysts tested, attributable to its well-dispersed nickel particles and larger active nickel surface area.  相似文献   

13.
An amperometric biosensor has been developed for the determination of H2O2 in plant samples. Horseradish peroxidase (HRP) is immobilized on a sandwiched nano-Au particle / m-phenylenediamine polymer film by glutaraldehyde cross-linking. The film is formulated on the carbon paste electrode (CPE) blended with ferrocene as an electron transfer mediator. On the low concentration range, the current response is related to the H2O2 concentration linearly from 0 to 8×10-6 M with a detection limit of 1.3×10-7 M. On a wider concentration range of 8×10-6 to 1.4×10-4 M, the reciprocal of current response is linearly related to the reciprocal of H2O2 concentration. The apparent Michaelis-Menten constant (Kmapp) was calculated to be 0.0334 mM. The sensor has been tested by determining H2O2 concentration in plant leaf samples.  相似文献   

14.
《Analytical letters》2012,45(4):661-676
Abstract

A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L.  相似文献   

15.
A simple procedure has been used for preparation of modified glassy carbon electrode with carbon nanotubes and copper complex. Copper complex [Cu(bpy)2]Br2 was immobilized onto glassy carbon (GC) electrode modified with silicomolybdate, α-SiMo12O404− and single walled carbon nanotubes (SWCNTs). Copper complex and silicomolybdate irreversibly and strongly adsorbed onto GC electrode modified with CNTs. Electrostatic interactions between polyoxometalates (POMs) anions and Cu-complex, cations mentioned as an effective method for fabrication of three-dimensional structures. The modified electrode shows three reversible redox couples for polyoxometalate and one redox couple for Cu-complex at wide range of pH values. The electrochemical behavior, stability and electron transfer kinetics of the adsorbed redox couples were investigated using cyclic voltammetry. Due to electrostatic interaction, copper complex immobilized onto GC/CNTs/α-SiMo12O404− electrode shows more stable voltammetric response compared to GC/CNTs/Cu-complex modified electrode. In comparison to GC/CNTs/Cu-complex the GC/CNTs/α-SiMo12O404− modified electrodes shows excellent electrocatalytic activity toward reduction H2O2 and BrO3 at more reduced overpotential. The catalytic rate constants for catalytic reduction hydrogen peroxide and bromate were 4.5(±0.2) × 103 M−1 s−1 and 3.0(±0.10) × 103 M−1 s−1, respectively. The hydrodynamic amperommetry technique at 0.08 V was used for detection of nanomolar concentration of hydrogen peroxide and bromate. Detection limit, sensitivity and linear concentration range proposed sensor for bromate and hydrogen peroxide detection were 1.1 nM and 6.7 nA nM−1, 10 nM-20 μM, 1 nM, 5.5 nA nM−1 and 10 nM-18 μM, respectively.  相似文献   

16.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H6P2Mo18O62·xH2O (P2Mo18). By the method, glassy carbon (GC) electrode modified with P2Mo18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P2Mo18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P2Mo18. The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P2Mo18/OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P2Mo18/OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors.  相似文献   

18.
SiO2/Sb2O3 (SiSb), having a specific surface area, S BET, of 788 m2 g−1, an average pore diameter of 1.9 nm and 4.7 wt% of Sb, was prepared by the sol-gel processing method. Meldola's blue (MeB), methylene blue (MB) and toluidine blue (TB) were immobilized on SiSb by an ion exchange reaction. The amounts of the dyes bonded to the substrate surface were 12.49, 14.26 and 22.78 μmol g−1 for MeB, MB and TB, respectively. These materials were used to modify carbon paste electrodes. The midpoint potentials (E m) of the immobilized dyes were −0.059, −0.17 and −0.18 V vs. SCE for SiSb/MeB, SiSb/MB and SiSb/TB modified carbon paste electrodes, respectively. A solution pH between 3 and 7 practically did not affect the midpoint potential of the immobilized dyes. The electrodes presented reproducible responses and were chemically stable under various oxidation-reduction cycles. Among the immobilized dyes, MeB was the most efficient to mediate the electron transfer for NADH oxidation in aqueous solution at pH 7. In this case, amperometric detection of NADH at an applied potential of 0 mV vs. SCE gives linear responses over the concentration range of 0.1–0.6 mmol L−1, with a detection limit of 7 μmol L−1.  相似文献   

19.
The solid-solid interactions between manganese and magnesium oxides in absence and in presence of small amounts of Li2O have been investigated. The molar ratios between manganese and magnesium oxides in the form of Mn2O3 and MgO were varied between 0.05:1 to 0.5:1. The mixed solids were calcined in air at 400-1000°C. The techniques employed were DTA, XRD and H2O2 decomposition at 20-40°C.The results obtained revealed that solid-solid interactions took place between the reacting solids at 600-1000°C yielding magnesium manganates (Mg2MnO4, Mg6MnO8, MgMnO4 besides unreacted portions of MgO, Mn2O3 and Mn3O4). Li2O-doping (0.75-6 mol%) of the investigated system followed by calcination at 600 and 800°C decreased progressively the intensity of the diffraction lines of Mn2O3 (Bixbyite) with subsequent increase in the lattice parameter 'a' of MgO to an extent proportional to the amount of Li2O added. This finding might suggest that the doping process enhanced the dissolution of Mn2O3 in MgO forming solid solution. This treatment led also to the formation of Li2MnO3. Furthermore, the doping with 3 and 6 mol% Li2O conducted at 800°C resulted in the conversion of Mn2O3 into Mn3O4, a process that took place at 1000°C in absence of Li2O. The produced Li2MnO3 phase remained stable by heating at up to 1000°C. Furthermore, Li2O doping of the investigated system at 400-1000°C resulted in a progressive measurable increase in the particle size of MgO.The catalytic activity measurements showed that the increase in the molar ratio of Mn2O3 in the samples precalcined at 400-800°C was accompanied by a significant increase in the catalytic activity of the treated solids. The maximum increase in the catalytic activity expressed as reaction rate constant measured at 20°C (k 20°C) attained 3.14, 2.67 and 3.25-fold for the solids precalcined at 400, 600 and 800°C, respectively. Li2O-doping of the samples having the formula 0.1 Mn2O3/MgO conducted at 400-600°C brought a progressive significant increase in its catalytic activity. The maximum increase in the value of k 20°C due to Li2O attained 1.93 and 2.75-fold for the samples preheated at 400 and 600°C, respectively and opposite effect was found for the doped samples preheated at 800°C.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
Studies on photo-catalytic reduction of CO2 using TiO2 photo-catalyst (0.1%, w/v) as a suspension in water was carried out at 350 nm light. CO2 from both commercially available source, as well as generated in situ through 2-propanol oxidation, was used for this study. The photolytic products such as hydrogen (H2), carbon monoxide (CO) andmethane (CH4) generated were monitored in TiO2 suspended aqueous solution with and without a hole scavenger, viz., 2-propanol. Similar photolytic experiments were also carried out with varying ambient such as air, O2, N2 and N2O. The yields of CO and CH4 in all these systems under the present experimental conditions were found to be increasing with light exposure time. H2 yield in N2-purged systems containing 2-propanol was found to be more as compared to the without 2-propanol system. The rate of H2 production in N2-purged aqueous solutions containing 0.1% TiO2 suspension were evaluated to be 0.226 and 5.8 μl/h, without and with 0.5 M 2-propanol, respectively. This confirmed that 2-propanol was an efficient hole scavenger and it scavenged photo-generated holes (h+), allowing its counter ion, viz., e, to react with water molecule/H+ to yield more H2. The formation of both CO and CH4 in the photolysis of CO2-purged aqueous solutions containing suspended TiO2 in absence of 2-propanol reveal that the generation of CH4 is taking place mainly through CO intermediate. In presence of air/O2, the yield of H2 in the system without 2-propanol was observed to be negligible as compared to the system containing 2-propanol in which low yield of H2 was obtained with a formation rate of approx. 0.5 μl/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号