首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在水热条件下合成了两个基于Keggin型磷钨酸盐的金属-有机框架化合物(MOFs)[Er_2H(μ-O)_2(dpdo)_4(H_2O)_2][PW_(12)O_(40)]·3H_2O(1)和[Tm_2H(μ-O)2(dpdo)4(H_2O)_2][PW_(12)(O_(40)]·3H_2O(2)(dpdo=4,4′-bis(pyridine-N-oxide),并通过元素分析、红外光谱(IR)、紫外光谱(UV)及单晶X射线衍射(XRD)的方法对其进行了结构表征.此外,通过紫外-可见分光光度法,在EPPS缓冲溶液中,考察了两种化合物在非均相体系中催化DNA模型磷酸二酯双(对硝基苯酚)磷酸二酯(BNPP)的水解进程.催化结果表明,在50℃,pH=4的条件下,两种催化剂对BNNP催化的一级水解裂解速率为10-7~10-6 s-1,最终产物为无机磷酸盐和对硝基苯酚.此外,该催化体系具有很好的重现性,并且催化剂可循环使用.  相似文献   

2.
张晓琼  汪彤  王培怡  姚伟  丁明玉 《色谱》2016,34(12):1176-1185
金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。  相似文献   

3.
A microporous Pb(ii) metal-organic framework (MOF) [PbL(2)]·2DMF·6H(2)O (1) has been assembled from a N-oxide and amide doubly functionalized ligand HL (= N-(4-carboxyphenyl)isonicotinamide 1-oxide). Complex 1 features a three-dimensional (3D) framework possessing one-dimensional (1D) rhombic channels with dimensions of 13 × 13 ?(2). The 3D framework is built up from 1D PbO(2) chains that link ligands in parallel fashion to construct single-wall channels. When recrystallizing 1 in a DMSO-DMF mixture (3?:?5 v/v), a new coordination polymer, [PbL(2)]·DMF·2H(2)O (2), was obtained. Complex 2 is also a 3D framework containing 1D rectangular channels, but the channel dimensions become reduced in size to 13 × 8 ?(2) due to reorganization of the Pb(ii) coordination environment. The PbO(2) chains in 2 are reformed to link ligands in a double-wall fashion, significantly reducing the channel size. Even though, the guest exchange study indicates that the DMF molecules in 2 could be replaced with benzene molecules when immersing in benzene solvent, showing single-crystal-to-single-crystal (SC-SC) guest exchange in the solid state and leading to a daughter crystal [PbL(2)]·0.5C(6)H(6)·2H(2)O (2'). Desolvated 1 and 2 display preferential adsorption behaviors of water vapour over CO(2) due to the hydrophilic nature of the channels and the strong host-guest interactions. Catalytic tests indicate that desolvated 1 and 2 have size-selective catalytic activity towards the Knoevenagel condensation reaction.  相似文献   

4.
Valuable application prospects and large-scale production technologies are powerful driving forces for the development of materials science. Carbon dots(CDs) are a kind of promising carbon-based fluorescent nanomaterials, which possess wide application prospects based and even beyond the fluorescence properties. Herein, we report the fast and high-yield synthesis of CDs and the large-scale preparation of fluorescent nanofiber films with enhanced mechanical properties. CDs were prepared from magn...  相似文献   

5.
The conjunction of porous ZIF-8 with polystyrene spheres is demonstrated to induce the formation of polystyrene@ZIF-8 core-shell structures. A subsequent etching process on polystyrene@ZIF-8 core-shells to remove polystyrene cores results in a unique hollow ZIF-8.  相似文献   

6.
Photoluminescence (PL) spectroscopy was used to characterize nanoscale ZnO impurities, amine-donor charge-transfer exciplexes, and framework decomposition in samples of MOF-5 prepared by various methods. The combined results cast doubt on previous reports describing MOF-5 as a semiconductor and demonstrate that PL as a tool for characterizing MOF purity possesses advantages such as simplicity, speed, and sensitivity over currently employed powder XRD MOF characterization methods.  相似文献   

7.
The study of multiple complex catalytic mechanisms is currently one of the great scientific issues for the application of high-energy solid propellants. Two novel heterobimetallic metal-organic frameworks (MOFs), Ba4Pb4(CH3CO2)8 [(CH6CO2)4Pb](CH3CO2)4 (PbBa-MOF) and Ba2Ni(CO2H)6(OH2)4 (NiBa-MOF), were prepared via the solvothermal method, and their structures and composition were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR) techniques and N2 adsorption/desorption experiment. The thermal decomposition characteristics of the two MOFs and their catalytic performances on the hexanitro hexaazaisowurtzitane (CL-20) thermolysis were also studied by differential scanning calorimetr (DSC) and thermogravimetric-fourier transform infrared spectroscopy-mass spectrum (TG-FTIR-MS) methods. The results showed that the NiBa-MOF presented a lower initial decomposition temperature than the PbBa-MOF, and the difference of the MOFs structures affected the starting point of thermal decomposition. Compared with the pure CL-20, the thermolysis peak temperature and apparent activation energy (Ea) of the CL-20/PbBa-MOF mixture were decreased by 2.2 °C and 23.76 kJ?mol?1, respectively. The Ea of CL-20/NiBa-MOF mixture was lower and 42.01 kJ?mol?1, indicating the better catalytic activity of NiBa-MOF. The thermolysis catalytic mechanisms were studied by analyzing the transformation of gas products during the pyrolysis of mixtures. The effect of these two MOFs on the CL-20 thermolysis is primarily owing to the strong attraction of metal cations to electronics, bimetallic synergistic catalysis, and the release of active free radicals. Furthermore, the laser ignition and flame propagation features showed that these two MOFs reduced the minimum ignition power density and ignition delay time of the CL-20, and the flame becomes brighter and more luminous. The influence of the two MOFs on the flame bright spot of CL-20 based mixtures was described.  相似文献   

8.
A well defined salen-nickel complex was introduced as "metalloligand" in lanthanide-based MOFs. By using this strategy unique structures, in which the salen-nickel unit acts as flexible strut, were obtained. The shape of the network is strongly influenced by the ion radius of the lanthanide element.  相似文献   

9.
We report a molecular simulation study for Cu-BTC metal-organic frameworks as carbon dioxide-methane separation devices. For this study we have computed adsorption and diffusion of methane and carbon dioxide in the structure, both as pure components and mixtures over the full range of bulk gas compositions. From the single component isotherms, mixture adsorption is predicted using the ideal adsorbed solution theory. These predictions are in very good agreement with our computed mixture isotherms and with previously reported data. Adsorption and diffusion selectivities and preferential sitings are also discussed with the aim to provide new molecular level information for all studied systems.  相似文献   

10.
Carbon dots (CDs) possess unique optical properties such as tunable photoluminescence (PL) and excitation dependent multicolor emission. The quenching and recovery of the fluorescence of CDs can be utilized for detecting analytes. The PL mechanisms of CDs have been discussed in previous articles, but the quenching mechanisms of CDs have not been summarized so far. Quenching mechanisms include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer (PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). Following an introduction, the review (with 88 refs.) first summarizes the various kinds of quenching mechanisms of CDs (including static quenching, dynamic quenching, FRET, PET and IFE), the principles of these quenching mechanisms, and the methods of distinguishing these quenching mechanisms. This is followed by an overview on applications of the various quenching mechanisms in detection and imaging.
Graphical abstract Schematic representation of the quenching mechanisms of carbon dots (CDs) which include static quenching, dynamic quenching, Förster resonance energy transfer (FRET), photoinduced electron transfer(PET), surface energy transfer (SET), Dexter energy transfer (DET) and inner filter effect (IFE). All these effects can be used to detect and image analytes.
  相似文献   

11.
A large amount of emerging research on carbon dots (CDs) has been gradually improving the understanding of their structures, properties and emission mechanism. Distinct from the dominating status of quantum confinement effect in quantum dots, CDs always suffer from the complicated optical properties, deriving from the large differences in raw materials and synthesis methods. The diverse concepts and species puzzle researchers and hinder the further study. Thus, there is an urgent need to unify the definition and clarify the confused relation of CDs. Herein, we classify the raw materials of CDs synthesis into small molecules and polymers, and discuss CDs from the aspects of raw materials. We believe that the polymer-like structures reserved in CDs are universal no matter from the condensation of small molecules or the direct inheritance of polymers. Moreover, many similarities are concluded between CDs and polymers through serious comparisons and enough evidences. The formation processes of CDs are mostly polymerization and the obtained CDs always possess polymeric characteristics, such as abundant reactive functional groups, polydispersity of products, highly crosslinked network structure and other similar properties to non-conjugated fluorescent polymers. Therefore, the new concept, polymer carbon dots (PCDs), is put forward to generalize all kinds of CDs based on the summary of related reports. Besides, the complicated influence factors of photoluminescence (PL) are discussed and mainly classified as molecule state, carbon core state, surface state and crosslink enhanced emission (CEE) effect. In general, this review puts forward PCDs as a unified definition of reported CDs, and summarizes the polymeric characteristics of PCDs from formation process and product properties, as well as simultaneously illustrates the PL mechanism.  相似文献   

12.
Molecular hydrogen is known to form stable, "nonclassical" sigma complexes with transition metal centers that are stabilized by donor-acceptor interactions and electrostatics. In this computational study, we establish that strong H2 sorption sites can be obtained in metal-organic frameworks by incorporating open transition metal sites on the organic linkers. Using density functional theory and energy decomposition analysis, we investigate the nature and characteristics of the H2 interaction with models of exposed open metal binding sites {half-sandwich piano-stool shaped complexes of the form (Arene)ML(3- n)(H2)n [M=Cr, Mo, V(-), Mn(+); Arene = C6H5X (X=H, F, Cl, OCH3, NH2, CH3, CF3) or C6H3Y2X (Y=COOH, X=CF3, Cl; L=CO; n=1-3]}. The metal-H2 bond dissociation energy of the studied complexes is calculated to be between 48 and 84 kJ/mol, based on the introduction of arene substituents, changes to the metal core, and of charge-balancing ligands. Thus, design of the binding site controls the H2 binding affinity and could be potentially used to control the magnitude of the H2 interaction energy to achieve reversible sorption characteristics at ambient conditions. Energy decomposition analysis illuminates both the possibilities and present challenges associated with rational materials design.  相似文献   

13.
The magnetothermal properties of a coordination polymer and a metal-organic framework (MOF) based on Gd(3+) ions are reported. An equally large cryogenic magnetocaloric effect (MCE) is found, irrespective of the dimensionality. This combined with their robustness makes them appealing for widespread magnetic refrigeration applications.  相似文献   

14.
How do you like your eggs? Amphiphilic carbon dots (CDs) with intense blue fluorescence have been produced from chicken eggs by treatment with plasma. They are used as effective "fluorescent carbon inks" for multicolor luminescent inkjet and silk-screen printing.  相似文献   

15.
The functionalisation of well-known rigid metal-organic frameworks (namely, [Zn(4)O(bdc)(3)](n), MOF-5, IRMOF-1 and [Zn(2)(bdc)(2)(dabco)](n); bdc = 1,4-benzene dicarboxylate, dabco = diazabicyclo[2.2.2]octane) with additional alkyl ether groups of the type -O-(CH(2))(n)-O-CH(3) (n = 2-4) initiates unexpected structural flexibility, as well as high sorption selectivity towards CO(2) over N(2) and CH(4) in the porous materials. These novel materials respond to the presence/absence of guest molecules with structural transformations. We found that the chain length of the alkyl ether groups and the substitution pattern of the bdc-type linker have a major impact on structural flexibility and sorption selectivity. Remarkably, our results show that a high crystalline order of the activated material is not a prerequisite to achieve significant porosity and high sorption selectivity.  相似文献   

16.
The mechanism of adsorption of molecular hydrogen (H2) on IRMOF-1 is studied at the MP2 level. The role of the two principal MOF components, the inorganic connector and the organic linker, for H2 adsorption is evaluated. Correlation methods and large basis sets are necessary to describe correctly the weak interactions (London dispersion) and to account for the polarisability of H2. We proof that the electrostatic interactions have a negligible contribution to the interaction energy and the adsorption mechanism is governed by London dispersion (3–5 kJ mol?1).  相似文献   

17.
Two novel calcium-adipate framework materials have been synthesized hydrothermally. GWMOF-7 ([Ca(C6H8O4)(H2O)2]*(C10H8N2)) and GWMOF-8 ([Ca(C6H8O4)(H2O)2]*(C12H12N2)) both formed three-dimensional structures and were characterized with single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy and elemental analysis. Thermal properties were also studied with thermogravimetric analysis, and show that these structures undergo a solid-state transformation into a denser three-dimensional framework.  相似文献   

18.
In this paper, we report the results of systematic study of effect of radiation crosslinking on PTC/NTC phenomena of carbon black(CB) filled vinyl polymers. We conclude that the effect of radiation crosslinking greatly improves the PTC intensity and electrical reproductivity in thermal cycling.  相似文献   

19.
Chemical and thermal stabilities of isotypic metal-organic frameworks (MOFs) like Al-BDC (Al-benzenedicarboxylate called MIL-53-Al), Cr-BDC (MIL-53-Cr) and V-BDC (MIL-47-V), after purification to remove uncoordinated organic linkers, have been compared to understand the effect of the central metal ions on the stabilities of the porous MOF-type materials. Chemical stability to acids, bases, and water decreases in the order of Cr-BDC>Al-BDC>V-BDC, suggesting stability increases with increasing inertness of the central metal ions. However, thermal stability decreases in the order of Al-BDC>Cr-BDC> V-BDC, and this tendency may be explained by the strength of the metal-oxygen bond in common oxides like Al(2)O(3), Cr(2)O(3), and V(2)O(5). In order to evaluate precisely the stability of a MOF, it is necessary to remove uncoordinated organic linkers that are located in the pores of the MOF, because a filled MOF may be more stable than the same MOF after purification.  相似文献   

20.
The objective of this work was to study the adsorption and separation of the most important families of hydrocarbon compounds on metal-organic frameworks (MOFs), in comparison with zeolites. For this purpose, we have selected four probe molecules, each of them representing one of these families, i.e., o- and p-xylene as aromatics, 1-octene as an alkene, and n-octane as an alkane. The separation of these four molecules was studied by binary breakthrough experiments. To represent the large diversity of MOF structures, the experiments were carried out with (i) two MOFs with coordinatively unsaturated metal sites (CUS), i.e., Cu-btc (HKUST-1) and CPO-27-Ni, (ii) a MOF with an anionic framework and extraframework cations, i.e. RHO-ZMOF, and (iii) two rather apolar zeolitic imidazolate framework (ZIF) materials with different pore sizes, i.e. ZIF-8 and ZIF-76. Zeolite NaY and zeolite β were used as polar and apolar reference adsorbents, respectively. The results can be briefly summarized as follows: ZIFs (not carrying any polar functional groups) behave like apolar adsorbents and exhibit very interesting and unexpected molecular sieving properties. CUS-MOFs behave like polar adsorbents but show the specificity of preferring alkenes over aromatics. This feature is rationalized thanks to DFT+D calculations. MOFs with extraframework cations behave like polar (cationic) zeolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号