首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report fast, high‐yield syntheses of a series of [Pt(CN)(HCN)X] complexes, where HCN is 2‐phenylpyridine (Hppy) or 2‐p‐tolylpyridine (Htopy) and X? is Cl?, Br?, I?, ONO2?, NO2? or SCN?. The structure of [Pt(topy)(Htopy)(ONO2)] was analyzed by single‐crystal X‐ray diffraction. Substitution of Cl? with Br? or I? in our complexes shifted the 195Pt NMR peaks upfield in the order Cl? < Br? < I?, but the magnitudes of their shifts were one‐tenth those observed for non‐cyclometalated platinum(II) complexes. As the two nitrato complexes showed strong emissions in acetonitrile solution—three to six times those of other complexes—they were used to fabricate OLEDs. Although their emissions were not particularly strong, devices fabricated with platinum(II) complexes containing bulky ligands emitted green light with a short lifetime (τ). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt???Pt and π–π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9–2.1 μs) triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII-complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr?1 m?2 for NIR OLEDs (λEL=725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.  相似文献   

3.
A dinuclear platinum(II) complex of (dfppy)2Pt2(dipic) has been prepared, where dfppy is 2,4-difluorophenylpyridine and dipic is a biphenyl-bridged bi-picolinic acid derivative. Its physical and optoelectronic properties, as well as molecular orbitals calculation have been investigated and compared with those of its mono-nuclear (dfppy)Pt(pic) complex. Both platinum(II) complexes exhibited almost identical photoluminescence (PL) spectra with deep blue emission in dilute dichloro-methane (10−5 M) and different PL spectra with red emission in their neat films. Stable white emissions were obtained in the (dfppy)2Pt2(dipic)-doped polymer light-emitting devices using a blend of poly(vinylcarbazole) and 2-(4-biphenyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole as a host matrix at dopant concentrations from 1 wt % to 10 wt %. In contrast, the (dfppy)Pt(pic)-doped devices exhibited orange-red emissions in the same device configuration. It indicates that dinuclear platinum(II) complex with a non-planar structure is an effective way to control formation excimers of platinum(II) complex and get white-emitting PLEDs with single dopant.  相似文献   

4.
A new self‐healing polymer has been obtained by incorporating a cyclometalated platinum(II) complex Pt(CNN)Cl (CNN = 6‐phenyl‐2,2′‐bipyridyl) into a polydimethylsiloxane (PDMS) backbone. The molecular interactions (a combination of Pt···Pt and π–π interactions) between cyclometalated platinum(II) complexes are strong enough to crosslink the linear PDMS polymer chains into an elastic film. The as prepared polymer can be stretched to over 20 times of its original length. When damaged, the polymer can be healed at room temperature without any healants or external stimuli. Moreover, the self‐healing is insensitive to surface aging. This work represents the first example where the attractive metallophilic inter­actions are utilized to design self‐healing materials. Moreover, our results suggest that the stretchability and self‐healing properties can be obtained simultaneously without any conflict by optimizing the strength of crosslinking interactions.

  相似文献   


5.
熊金帆  李凯 《化学通报》2020,83(2):99-104
用于有机发光二极管(OLED)的红光和绿光磷光金属配合物材料在稳定性和发光效率方面均已达到了目前产业化应用的要求,而蓝光磷光配合物则在稳定性方面无法达到应用条件。高能量的激发态以及d-d态引起的配合物分解是造成蓝光磷光OLED器件稳定性差的原因之一。采用四齿配体开发d8金属配合物是同时提升配合物发光效率和稳定性的途径之一,有望在蓝光磷光材料和器件应用方面取得突破。本文总结了基于四齿配体的蓝光铂(Ⅱ)和钯(Ⅱ)配合物的研究进展,通过探讨配体结构对配合物光物理性质和稳定性的影响,为继续开发具有应用前景的蓝光金属配合物材料提供了指导性方向。  相似文献   

6.
A series of neutral Ir(III)‐based heteroleptic complexes with a formula of [Ir(η2‐(CN))22‐(SS))] ((CN) = ppy, (SS) = Et2NCS2 ( 2a ), MeOCS2 ( 2b ), EtOCS2 ( 2c ), iPrOCS2 ( 2d ); (CN) = tpy, (SS) = Et2NCS2 ( 3a ), MeOCS2 ( 3b ), EtOCS2 ( 3c ), iPrOCS2 ( 3d ); (CN) = epb , (SS) = Et2NCS2 ( 4a ), MeOCS2 ( 4a ), EtOCS2 ( 4a ); ppyH = 2‐phenylpyridine; tpyH = 2‐(4′‐tolyl)pyridine; epbH = ethyl 4‐(2′‐pyridyl)benzate) was synthesized and characterized. The crystal structure of complex 2d was also determined. The electron‐releasing substituents on (CN) or (SS) blueshift λmax values.  相似文献   

7.
A nickel(II) and a cobalt(III) complex of two different potentially tetradentate Schiff bases with different binding modes have been synthesised. The nickel(II) complex [NiL1] · CH3OH (1) was formed, on reacting the metal salt with a perfectly symmetrical N2O2 tetradentate Schiff base ligand H 2 L 1 , which is the 1:2 condensation product of 1,3-diamino propane and 2-hydroxyacetophenone. The cobalt(III) complex [Co(HL2)3] · (ClO4)3 · H2O (2) was synthesised using an asymmetric N2O2 tetradentate Schiff base ligand HL 2 on condensing N,N-dimethyl-1,3-diamino propane with o-vanillin in 1:1 mmol ratio. Although both Schiff bases are N2O2 functionalised, they showed variation in their coordinative property with nickel(II) and cobalt(III) ions. Both the complexes were characterised by IR spectroscopy and cyclic voltammetry and their single crystal structures clearly indicate that 1 is a mononuclear species whereas 2 is a hydrogen-bonded dimer.  相似文献   

8.
Three dendritic PNP ligands with ethylenediamine, 1,4‐butanediamine, 1,6‐diaminohexane as bridged groups are synthesized in good yields, respectively. Three dendritic PNP chromium complexes ( C1  –  C3 ) are prepared with the ligands and chromium(III ) chloride tetrahydrofuran complex (CrCl3(THF )3) as materials. The dendritic PNP ligands and the synthetic chromium complexes are fully characterized by spectroscopic and analytical methods. All chromium complexes activated with methylaluminoxane (MAO ) exhibited moderate activities on ethylene oligomerization (7.90 × 104 – 2.15 × 105 g (mol Cr h)−1] and had better selectivity for C6 and C8 oligomer, reaching up to 81%. The chromium complex ( C1 ) activated with diethylaluminium chloride (Et2AlCl) has higher catalytic activity than the chromium complex C1 activated with MAO , although the chromium complex ( C1 ) activated with Et2AlCl had lower selectivity for C6 and C8 oligomer. The effects of solvent and reaction parameters on ethylene oligomerization are also studied using the chromium complex C1 as pre ‐ catalyst and MAO as co ‐ catalyst. Under optimized conditions ([complex] = 2 μmol, Al/Cr = 500, 25 °C, 0.9 MP a ethylene, 30 min), the catalytic activity of complex C1 in toluene is 2.15 × 105 g (mol Cr h)−1 and the selectivity for C6 and C8 oligomer is 36.76%. In addition, the structure of complexes significantly affects both the catalytic activity and the selectivity on ethylene oligomerization.  相似文献   

9.
A novel bi-picolinic acid derivative of H2dipic-BTICz containing binary triphenylamine-substituted indolo[3,2-b]carbazole (BTICz) unit and its dinuclear platinum(II) complex of (dfppy)2Pt2(dipic-BTICz) were synthesized as a single-component emitter used in the white polymer light-emitting diodes (WPLEDs), where dfppy is 2-(2,4-difluorophenyl)pyridine and dipic-BTICz is an anion of H2dipic-BTICz. The photophysical and electrochemical properties of (dfppy)2Pt2(dipic-BTICz) were investigated. Compared with the reported mononuclear platinum complex of (dfppy)Pt(pic), (dfppy)2Pt2(dipic-BTICz) exhibited a red-shifted photoluminescent peak at 434 nm in dilute dichloromethane (10−5 M), but a weakened and red-shifted aggregation emission peak at 640 nm besides its intrinsic emission at 445 nm in its neat films. Stable pure white emissions with CIE coordinates of (0.325±0.005, 0.345±0.015) and a maximum brightness of 208 cd/m2 were observed in the (dfppy)2Pt2(dipic-BTICz)-doped single-emissive-layer (SEL) PLEDs using a blend of poly(vinylcarbazole) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as a host matrix at 1 wt % dopant concentrations under applied voltages from 9 to 14 V. It indicates that the intrinsic and aggregation emissions of this dinuclear platinum complex were effectively tuned by inserting a new BTICz fluorophore in the dual picolinic acid derivative. Therefore, it is a promising single-component emitter to get white emission in SEL PLEDs.  相似文献   

10.
The Co(II) complex [Co{C6H4–1,2-(N=CH–C6H4O)2}] (I) and Ni(II) complex [Ni{C6H4–1,2-(N=CH–C6H4O)2}] (II) with Schiff base of o-phenylenediamine and salicylaldehyde have been synthesized. The structure of the ligand and its complexes were derived on the basis of various techniques such as elemental analysis, mass, FT-IR, electronic spectra and magnetic susceptibility. From the Singal crystal X-ray diffraction (SCXRD) analysis techniques (CIF file CCDC no. 1498772 (II)), it has been confirmed that the Schiff base ligand (L), coordinates to the metal ion in a tetradentate fashion through the nitrogen and oxygen atom. In addition, the square planar geometry of Ni(II) complex also has been confirmed from SCXRD. Electronic spectra, mass spectra, and magnetic susceptibility measurements reveal square planar geometry for the Co(II) complex. Synthesized complexes were used in cross-coupling of arylhalides with phenylboronic acid. The transformation offers products in good yields using 0.02 mmol catalysts loading, thereby proving the efficiency of the complexes as catalysts for Suzuki–Miyaura reaction.  相似文献   

11.
Atomic Layer Deposition (ALD) precise controlling ultra-thin platinum (Pt) modified Graphite carbon nitride (g-C3N4) photocatalysts, which had been doped with gold nanoparticles (Au NPs) by photodeposition, were successfully synthesized. The experimental results showed that precise regulation of platinum decorated C3N4-Au(C3N4-Au/nPt (n is the number of Pt ALD cycles, 1 Å per cycle)) exhibited excellent photocatalytic degradation ability for Rhodamine B (RhB). Under simulated sunlight irradiation, the degradation rate of 10 mg/L RhB(100 mL) by 1.5 mg C3N4-Au/10Pt catalysts was 95.8% within 60 min that is much better than other photocatalysts for the degradation of RhB. The efficient degradation mechanism of RhB by C3N4-Au/10Pt photocatalysts was studied and the experiments demonstrated the ·O2 as main active species played an important role in the photocatalytic process. Local surface plasmon resonance (LSPR) of Au NPs and Schottky barrier between Pt clusters and g-C3N4 may be the reasons for enhanced C3N4-Au/10Pt photocatalytic performances. Furthermore, the successive catalytic cycles revealed the excellent stability of C3N4-Au/10Pt photocatalyst.  相似文献   

12.
Transition metal-catalyzed atom transfer radical addition (ATRA) reactions are an effective and versatile strategy for constructing carbon–carbon bonds in organic synthesis. Typically, the metal center in this metal-assisted radical transformation undergoes a reversible redox process. In this work, a quintuply-bonded dinuclear complex, Mo2(NN)2 {NN = μ-κ2-CH[N(2,6-iPr2C6H3)]2}, has been investigated as potential catalyst for radical addition of CCl4 to 1-hexene by performing density functional theory (DFT) calculations. The study shows that the Mo2(NN)2-mediated radical addition reaction is computationally predicted to occur with acceptable activation energies, indicating that the Mo-Mo quintuple bond can be applied as an effective catalyst for this transformation under mild conditions. The whole reaction involves 3 steps, two of which are metal-mediated. Firstly, the C-Cl bond activiation catalyzed by Mo2(NN)2 to obtain Mo2(NN)2Cl and ·CCl3 radical; Then the ·CCl3 radical interacts with 1-hexene to get an addition, the addition product reacts with the Mo2(NN)2Cl to get the last product and regenerate the catalyst Mo2(NN)2. Both the thermodynamic and kinetic study show that the second step is the rate-determine step. When coordinating solvent pyridine is added to the catalytic reaction, the reaction is suppressed due to their high energies barriers, which is consistent with experimental results.  相似文献   

13.
A precursor (H3A) was synthesized by the mono condensation of 2-aminobenzylamine with salicylaldehyde and then a tetradentade Schiff-base ligand (H2L) prepared by using H3A and 3-methoxysalicylaldehyde. The copper(II) complex of this new ligand was prepared and characterized by elemental analysis, electronic absorption, Fourier transform infrared (FT-IR), and magnetic susceptibility. For the ligand, 1H- and 13C-NMR and liquid chromatography mass spectrometry (LC–MS) spectra were obtained. The tetradentate ligand is coordinated to Cu(II) through the phenolic oxygen and azomethine nitrogen. The use of this metal complex in the preparation of a modified electrode is also described. CuL was electropolymerized on a platinum electrode surface in a 0.1 mol dm?3 solution of lithium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.6 V versus Ag/Ag+. Electrochemical properties of the electroactive polymeric film have been investigated and a surface confined polymerization mechanism was proposed.  相似文献   

14.
《Polyhedron》1999,18(5):721-727
Reaction of 3-(2-pyrazinyl)pyrazole with KBH4 in a 21:1 ratio afforded the new ligand bis3, 2, 1dihydroborate [L]a bis(pyrazolyl)borate in which each pyrazolyl ring is functionalised with a pyrazin-2-yl group at the C3 position[L] is therefore a potentially chelating tetradentate ligand with two externally-directed N atoms (the pyrazinyl N4 atoms) which are available for additional metal–ion bindingleading to eg coordination polymers The crystal structure of [TlL] shows it to be a simple mononuclear complex with the Tl(I) ion coordinated in the N4 binding pocket of the ligandand the externally-directed N atoms involved only in intermolecular N H–C hydrogen-bonding interactions The two Tl–N bonds to the pyrazolyl N2 atoms (average length 270 Å) are much shorter than the bonds to the pyrazinyl N1 atoms (average length 305 Å) also there is an obvious gap in the apical position of the metal–ion coordination sphere characteristic of a stereochemically active lone pair The crystal structure of [PbL2] Et2O shows that the Pb(II) centre is nine-coordinate with two tetradentate chelating ligands and the ninth donor being a pyrazinyl N4 atom from an adjacent complex unit The molecules therefore form infinite one-dimensional chains in the crystal via bridging pyrazinyl groups The coordination geometry about the Pb(II) ions is approximately capped square antiprismatic with no obvious gap in the coordination sphere suggesting that the lone pair is stereochemically inactive.  相似文献   

15.
The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with λmax in the range 417–546 nm, which are assigned to states of metal‐to‐ligand charge‐transfer (1MLCT) 1[Pt(5d)→π*(Schiff base)] character mixed with 1[lone pair(phenoxide)→π*(imine)] charge‐transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 °C, and show emission λmax at 541–649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero‐field splitting parameters of the emitting triplet state of 14–28 cm?1. High‐performance yellow to red organic light‐emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A?1 and a device lifetime up to 77 000 h at 500 cd m?2.  相似文献   

16.
It is shown that trigonal bipyramidal platinum(II), rhodium(I) and iridium(I) olefin complexes are better classified with the platinum(O) complex [Pt(PPh3)2(C2H4)] as class T olefin complexes than with the square-planar platinum(II) complexes such as [Pt(C2H4)Cl3]- which fall in class S. The underlying reasons for this are considered to be electronic rather than steric as was previously suggested.  相似文献   

17.

Pyridine-derived platinum(II) complexes with the general formula [PtCl2L2] (L1: 3,5-dimethylpyridine, L2: 2-amino-5-bromopyridine, L3: 4-(4-nitrobenzyl)pyridine) were synthesized. Characterization of the synthesized complexes was made via FT-IR, UV–Vis, 1H-NMR and 13C-NMR techniques. While the thermal behavior of the complexes was investigated via DTA/TG combined system, their kinetic parameters were investigated by using Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energy of the decomposition kinetics of the complexes was calculated to be 196.5–31.7 kJ mol?1 for FWO and 203.4–29.2 kJ mol?1 for KAS. The cytotoxic effect of the complexes against the colon cancer cell line (DLD-1), which is one of the most common types of cancer observed both in humans and animals, was investigated. The complexes showed high cytotoxicity on DLD-1. In particular, [PtCl2L 12 ] complex was found to be the most effective compounds against colon cancer cell line during the 24 h incubation period. According to these results, the pyridine-derived platinum(II) complexes would contribute to oncologic treatment as chemotherapeutic agents.

  相似文献   

18.
The temperature dependence measurements of 35Cl NQR frequencies and 1H NMR spin-lattice relaxation time T1 were carried out for guanidinium tetrachloro-aurate(III), -platinate(II), and -palladate(II). The gold(III) complex showed four NQR lines at various temperatures between 77 and 344 K, while the platinum-(II) and palladium(II) complexes gave two NQR lines in the temperature ranges 77–169 K and 77–220 K, respectively. An unusual phase transition was located at 363 K for the gold(III) complex. The high-temperature phase was easily supercooled. All the complexes studied yielded a T1 minimum attributable to the reorientation of the planar cation about its C3 axis. The motional parameters were evaluated. The Zeeman-quadrupole cross relaxation between protons and chlorine nuclei was observed for the platinum(II) and palladium(II) complexes at various temperatures below room temperature, while it was also detected for the high-temperature phase of the gold(III) complex.  相似文献   

19.
Near-infrared (NIR) and IR spectroscopy have been applied for the characterisation of three complex Cu–Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cation substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and in the vibrational spectra of these Cu–Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers, 11,390 and 7,545 cm−1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for ν3 and ν4 (SO4)2− stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction in symmetry of the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3− vibrational modes at 1,090 and 990 cm−1. The range of IR absorption is higher in ktenasite than in kipushite, while it is intermediate in orthoserpierite.  相似文献   

20.
Two new copper(II) complexes, [Cu2(L1)2](ClO4)2 (1) and [Cu(L2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through phenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independent N-(salicylidene)-bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5–300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J = ?23.6 cm?1, which is substantiated by a DFT calculation (J = ?27.6 cm?1) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号