首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(10):4617-4622
Protein-based drugs have received extensive attention in the field of drug research in recent years. However, protein-based drug activity is difficult to maintain during oral delivery, which limits its application. This study developed bifunctional oral lipid polymer hybrid nanoparticles (R8-PEG-PPNPs) that deliver superoxide dismutase (SOD) for the treatment of ulcerative colitis (UC). R8-PEG-PPNPs was composed of PCADK, PLGA, lecithin, and co-modified with stearic acid-octa-arginine and polyethylene glycol. The nanoparticles (NPs) are uniformly dispersed with a complete spherical structure. In vitro stability and release studies showed that R8-PEG-PPNPs exhibited good stability and protection. In vitro cell culture experiments demonstrated that R8-PEG-PPNPs as carriers have no significant toxic effects on cells at concentration below 1000 µg/mL and promote cellular uptake. In experiments with ulcerative colitis mice, R8-PEG- PPNPs were able to enhance drug absorption by intestinal epithelial cells and accumulate effectively at the site of inflammation. Its therapeutic effect further demonstrates that R8-PEG-PPNPs are a promising delivery system for oral delivery of protein-based drugs.  相似文献   

2.
Gold nanoparticles (Au NPs), which are extremely useful materials for imaging and photothermal therapy, typically require a drug delivery system to transport them to the affected tissue and into the cells. Since liposomes are approved as drug carriers, complexes of liposomes with Au NPs were considered ideal solutions to deliver Au NPs to the target site in vivo. In this study, we prepared complexes of various liposomes with Au NPs via physical absorption and characterized them. The time dependency of the surface plasmon resonance of this complex, which is a unique property of Au NPs, shows that the liposomes promote the formation of stable dispersions of Au NPs under isotonic conditions, even though intact Au NPs aggregate immediately. From a release assay of calcein from liposomes and transmission electron microscopy analysis, the Au NPs were complexed with liposomes without membrane disruption. These complexes could be formed by using cationic liposomes and polyethylene glycol-modified liposomes, as well as by using phosphatidylcholine liposomes, which are useful for drug and gene delivery. We proposed this kind of complex as a nanomedicine with diagnostic and therapeutic ability.  相似文献   

3.
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.  相似文献   

4.
Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.  相似文献   

5.
The versatile pharmaceutical material cyclodextrin’s (CDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. By the early 1950s the basic physicochemical characteristics of cyclodextrins had been discovered, since than their use is a practical and economical way to improve the physicochemical and pharmaceutical properties such as solubility, stability, and bioavailability of administered drug molecules. These CDs can serve as multi-functional drug carriers, through the formation of inclusion complex or the form of CD/drug conjugate and, thereby potentially serving as novel drug carriers. This contribution outlines applications and comparative benefits of use of cyclodextrins (CDs) and their derivatives in the design of novel delivery systems like liposomes, microspheres, microcapsules, nanoparticles, cyclodextrin grafted cellulosic fabric, hydrogels, nanosponges, beads, nanogels/nanoassemblies and cyclodextrin-containing polymers. The article also focuses on the ability of CDs to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, drug safety, drug stability, and the ability to deliver a drug to targeted site. The article highlight’s on needs, limitations and advantages of CD based delivery systems. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.  相似文献   

6.
We reported a one-step encapsulation of indocyanine green (ICG) in ZIF-8 nanoparticles (NPs). The as-prepared ICG@ZIF-8 NPs possess an absorption band in the near infrared region and have the good photothermal conversion efficiency.  相似文献   

7.
Nanoliposomes are important carriers capable of packaging drugs for various delivery applications through passive targeting tumor sites by enhancing permeability and retention effect. Radiolabeled liposomes have potential applications in radiotherapy and diagnostic imaging. However, the physico-chemical instability of liposomes during manufacturing and storage limits their extensive application. Therefore, considerable numbers of studies have been made on the stability of liposomes over the last few years in order to overcome this problem. In this study, we attempted to prepare polymer-coated liposomes using water-soluble chitosan in order to enhance the stability of rhenium(III) chloride-incorporated liposomes. They were characterized by an electrophoretic light-scattering spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectrometer, and phase-contrast microscopy. The chitosan-coated liposomes are spherical and the particle size is about 800–850 nm. Incorporation of chitosan into the liposome bilayer decreased rhenium(III) chloride release from the liposome due to an increased rigidity of the liposome membrane structure. Chitosan-coated liposomes showed a higher stability compared with the stability of non-coated liposomes. The release characteristics of rhenium(III) chloride encapsulated in the liposome were taken as a measure of stability of the liposome membrane.  相似文献   

8.
Composite poly(N-isopropylacrylamide) (PNIPAAm)/phosphatidylcholine (PC) microparticles were prepared by electrospraying. PC-based liposomes were subsequently generated upon the addition of water. The microparticles have an average diameter of ca. 1 μm, while the liposomes produced were found to have much smaller diameters of ca. 225–280 nm. The liposomes had zeta potentials of ?44 to ?50 mV, consistent with the formation of a stable suspension. Upon heat treatment, the liposomes exhibit phase transitions due to the influence of PNIPAAm. The liposomes containing 33 % PC have a phase transition temperature of approximately 36 °C, close to physiological conditions. The model drug ketoprofen could be loaded into electrosprayed microparticles and subsequently incorporated into self-assembled liposomes, with an entrapment efficiency for the latter process of ca. 75 %. Sustained drug release regulated by temperature was observed from these drug-loaded materials. At 25 °C, only 45 % of the total drug loading was released after 110 hours, while at 37 °C drug release approached 90 % over the same time period. The self-assembled liposomes reported here, therefore, have great potential as drug delivery devices.  相似文献   

9.
10.
Numerous attempts to overcome the poor water solubility of cam ptothecin (CPT) by various nano drug delivery systems are described in various sources in the literature. However, the results of these approaches may be hampered by the incomplete separation of free CPT from the formulations, and this issue has not been investigated in detail. This study aimed to promote the solubility and continuous delivery of CPT by developing long-lasting liposomes using various weights (M.W. 2000 and 5000 Daltons) of the hydrophilic polymer polyethylene glycol (PEG). Conventional and PEGylated liposomes containing CPT were formulated via the lipid film hydration method (solvent evaporation) using a rotary flash evaporator after optimising various formulation parameters. The following physicochemical characteristics were investigated: surface morphology, particle size, encapsulation efficiency, in vitro release, and formulation stability. Different molecular weights of PEG were used to improve the encapsulation efficiency and particle size. The stealth liposomes prepared with PEG5000 were discrete in shape and with a higher encapsulation efficiency (83 ± 0.4%) and a prolonged rate of drug release (32.2% in 9 h) compared with conventional liposomes (64.8 ± 0.8% and 52.4%, respectively) and stealth liposomes containing PEG2000 (79.00 ± 0.4% and 45.3%, respectively). Furthermore, the stealth liposomes prepared with PEG5000 were highly stable at refrigeration temperature. Significant changes were observed using various pharmacokinetic parameters (mean residence time (MRT), half-life, elimination rate, volume of distribution, clearance, and area under the curve) of stealth liposomes containing PEG2000 and PEG5000 compared with conventional liposomes. The stealth liposomes prepared with PEG5000 showed promising results with a slow rate of release over a long period compared with conventional liposomes and liposomes prepared with PEG2000, with altered tissue distribution and pharmacokinetic parameters.  相似文献   

11.
The main purpose of this study was to evaluate the intestinal absorption and the antineoplastic effect of the poorly water-soluble drug celastrol when liposomes were used as oral drug delivery system. Liposomes were prepared by the ethanol-injection method. An optimized liposome formulation composed of phospholipid, cholesterol and Tween-80 resulted in favorable encapsulation efficiency at 98.06 ± 0.94%. Homogeneous and stable particle size of 89.6 ± 7.3 nm and zeta potential of -(87.7 ± 5.8) mV were determined by laser particle size analyzer. Subsequently, the four-site perfusion rat intestinal model revealed that celastrol-loaded liposomes had improved effective permeability compared to the free drug in four intestinal segments (p < 0.05). Moreover, celastrol-loaded liposomes could also inhibit the tumor growth in C57BL/6 mice. These results suggest that liposomes could be a promising perioral carrier for celastrol.  相似文献   

12.
The binding and detachment of carboxyl‐modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl‐modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold‐nanoparticle‐decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten‐times‐slower drug release compared to gold‐nanoparticle‐decorated 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug‐release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.  相似文献   

13.
The skin permeation of bacitracin zinc in liposomes and niosomes after topical application were elucidated in the present study with the to increase its penetration capacity and, hence, efficiency. The formulations of bacitracin zinc were prepared by film hydration method and characterized for vesicle shape, size, entrapment efficiency, and drug permeation across rat skin and also evaluated for their stability. Formulation with niosomes demonstrated a better skin permeation potential, sustained release characteristic, and higher stability as compared to liposomes. The ability of liposomes and niosomes to modulate drug delivery makes the two vesicles useful to formulate topical bacitracin zinc.  相似文献   

14.
mTHPC is a non polar photosensitizer used in photodynamic therapy. To improve its solubility and pharmacokinetic properties, liposomes were proposed as drug carriers. Binding of liposomal mTHPC to serum proteins and stability of drug carriers in serum are of major importance for PDT efficacy; however, neither was reported before. We studied drug binding to human serum proteins using size‐exclusion chromatography. Liposomes destruction in human serum was measured by nanoparticle tracking analysis (NTA). Inclusion of mTHPC into conventional (Foslip®) and PEGylated (Fospeg®) liposomes does not affect equilibrium serum protein binding compared with solvent‐based mTHPC. At short incubation times the redistribution of mTHPC from Foslip® and Fospeg® proceeds by both drug release and liposomes destruction. At longer incubation times, the drug redistributes only by release. The release of mTHPC from PEGylated vesicles is delayed compared with conventional liposomes, alongside with greatly decreased liposomes destruction. Thus, for long‐circulation times the pharmacokinetic behavior of Fospeg® could be influenced by a combination of protein‐ and liposome‐bound drug. The study highlights the modes of interaction of photosensitizer‐loaded nanovesicles in serum to predict optimal drug delivery and behavior in vivo in preclinical models, as well as the novel application of NTA to assess the destruction of liposomes.  相似文献   

15.
Ultrasound mediates the release of curcumin from microemulsions   总被引:1,自引:0,他引:1  
Ultrasound is a powerful noninvasive modality for biomedical imaging, and holds much promise for noninvasive drug delivery enhancement and targeting. However, the optimal design of sound sensitive carriers is still poorly understood. In this study, curcumin, an important natural antioxidant and anticancer compound, was stably entrapped into microemulsion droplets with average size 20-35 nm. To release curcumin, low frequency (40 kHz) ultrasound at an intensity of 3.8 or 9.8 W/cm2 was applied to the microemulsions, using a probe sonicator. On insonation, much of the curcumin was released from the microemulsions and formed insoluble aggregates, as evidenced by decreased UV-vis absorption at 420 nm. The initial release rate (assayed by the rate of change of absorption) was as high as 0.11 microg/s (1.87%/sec) in phosphate buffered saline solution at neutral pH, but decreased at acidic pH. Interestingly, lower curcumin loading led to a more rapid release under insonation. Measurements of emulsion droplet size implicate droplet reorganization (fusion or fission) as an important contributing mechanism for the ultrasonic release of this compound. Although cargo in microemulsions is partitioned, rather than encapsulated (as in, for example, liposomes), these new results demonstrate that microemulsion carriers are feasible for some ultrasonic drug delivery applications.  相似文献   

16.
《中国化学快报》2023,34(1):107484
Pulmonary delivery is an effective drug delivery strategy for the treatment of local respiratory diseases. However, the rapid systemic absorption through the lung due to the thin barrier and persistent lung clearances influence the drug retention in the lung. In this study, we designed a lipid-coated genistein nanocrystals (Lipo-NCs) formulation to achieve enhanced efficiency of local pulmonary delivery. The Lipo-NCs were fabricated by modifying genistein nanocrystals (NCs) with phospholipid membrane through thin film hydration following the homogenization method. The prepared Lipo-NCs exhibited a decreased drug release rate compared with the naked NCs. Our results demonstrated that intracellular uptake and transcellular transport of NCs by the Calu-3 epithelial layer were reduced after lipid coating. Furthermore, the macrophages clearance was also impeded by this Lipo-NCs formulation. In vivo lung retention and distribution revealed that more genistein was retained in the lung after intratracheal administration of Lipo-NCs. The pharmacokinetic study displayed that the AUC(0-t) values of Lipo-NCs were 1.59-fold lesser than those of the NCs group, indicating a reduced systemic absorption. In conclusion, this research indicated that Lipo-NCs could be a suitable formulation for reducing systemic absorption and macrophages clearance, and thus enhancing drug concentration in lung by pulmonary delivery.  相似文献   

17.
Despite of great advances of phospholipids and liposomes in clinical therapy, very limited success has been achieved in the preparation of smart phospholipids and controlled-release liposomes for in vivo drug delivery and clinical trials. Here we report a supramolecular approach to synthesize novel supramolecularly engineered phospholipids based on complementary hydrogen bonding of nucleosides, which greatly reduces the need of tedious chemical synthesis, including reducing the strict requirements for multistep chemical reactions, and the purification of the intermediates and the amount of waste generated relative more traditional approaches. These upgraded phospholipids self-assemble into liposome-like bilayer structures in aqueous solution, exhibiting fast stimuli-responsive ability due to the hydrogen bonding connection. In vitro and in vivo evaluations show the resulted supramolecular liposomes from nucleoside phospholipids could effectively transport drug into tumor tissue, rapidly enter tumor cells, and controllably release their payload in response to an intracellular acidic environment, thus resulting in a much higher antitumor activity than conventional liposomes. The present supramolecularly engineered phospholipids represent an important evolution in comparison to conventional covalent-bonded phospholipid systems.  相似文献   

18.
The PtIV prodrug iproplatin has been actively loaded into liposomes using a calcium acetate gradient, achieving a 3-fold enhancement in drug concentration compared to passive loading strategies. A strain-promoted cycloaddition reaction (azide- dibenzocyclooctyne) was used to attach iproplatin-loaded liposomes L(Pt) to gas-filled microbubbles (M), forming an ultrasound-responsive drug delivery vehicle [M−L(Pt)]. Ultrasound-triggered release of iproplatin from the microbubble-liposome construct was evaluated in cellulo. Breast cancer (MCF-7) cells treated with both free iproplatin and iproplatin-loaded liposome−microbubbles [M−L(Pt)] demonstrated an increase in platinum concentration when exposed to ultrasound. No appreciable platinum uptake was observed in MCF-7 cells following treatment with L(Pt) only or L(Pt)+ultrasound, suggesting that microbubble-mediated ultrasonic release of platinum-based drugs from liposomal carriers enables greater control over drug delivery.  相似文献   

19.
制备了树枝状聚合物聚酰胺-胺2代和3代(PAMAM G2, PAMAM G3)包覆的葛根素(Puerarin, PUE)脂质体, 考察了脂质体包覆前后的粒径、Zeta电位的变化及包覆率和体外释放特性. 用异硫氰酸荧光素(FITC)标记PAMAM, 采用透射电镜和激光扫描共聚焦显微镜分别观察了PAMAM包覆脂质体和FITC-PAMAM包覆脂质体的形态. 采用改进的Valia-Chien扩散池及兔离体角膜评价了脂质体包覆前后角膜的药物渗透特性, 分别考察了脂质体包覆前后的角膜前滞留时间、角膜残留药量和角膜水化值. 研究结果表明, 包覆后的脂质体粒径略有增加, 但没有显著差异, Zeta电位由负变正, 并且随PAMAM比例的增加而增加. 透射电镜和激光扫描共聚焦显微镜观察结果显示, PAMAM能较好地包覆于脂质体表面. PAMAM G2的包覆率明显比PAMAM G3高. 包覆前后的脂质体释药特性相似, 均具有明显的缓释作用. PAMAM包覆PUE脂质体后, 与PUE水溶液和未包覆PUE脂质体相比, 其PUE离体兔角膜表观渗透系数、角膜前滞留时间及角膜残留药量均明显增加, 并具有显著差异, 其中PAMAM G3包覆脂质体优于PAMAM G2包覆脂质体. 水化值检测结果表明, PAMAM包覆PUE脂质体对角膜的刺激性不明显.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号