首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《中国化学快报》2023,34(4):107465
Sodium-ion batteries (SIB) have attracted widespread attention in large-scale energy storage fields owing to the abundant reserve in the earth and similar properties of sodium to lithium. Biomass-based carbon materials with low-cost, controllable structure, simple processing technology, and environmental friendliness tick almost all the right boxes as one of the promising anode materials for SIB. Herein, we present a simple novel strategy involving tea tomenta biomass-derived carbon anode with enhanced interlayer carbon distance (0.44 nm) and high performance, which is constructed by N,P co-doped hard carbon (Tea-1100-NP) derived from tea tomenta. The prepared Tea-1100-NP composite could deliver a high reversible capacity (326.1 mAh/g at 28 mA/g), high initial coulombic efficiency (ICE = 90% at 28 mA/g), stable cycle life (262.4 mAh/g at 280 mA/g for 100 cycles), and superior rate performance (224.5 mAh/g at 1400 mA/g). Experimental results show that the excellent electrochemical performance of Tea-1100-NP due to the high number of active N,P-containing groups, and disordered amorphous structures provide ample active sites and increase the conductivity, meanwhile, large amounts of microporous shorten the Na+ diffusion distance as well as quicken ion transport. This work provides a new type of N,P co-doped high-performance tomenta-derived carbon, which may also greatly promote the commercial application of SIB.  相似文献   

2.
Carbon coated magnetite (Fe3O4) core-shell nanorods were synthesized by a hydrothermal method using Fe2O3 nanorods as the precursor. Transmission electron spectroscopy (TEM) and high resolution TEM (HRTEM) analysis indicated that a carbon layer was coated on the surfaces of the individual Fe3O4 nanorods. The electrochemical properties of Fe3O4/carbon nanorods as anodes in lithium-ion cells were evaluated by cyclic voltammetry, ac impedance spectroscopy, and galvanostatic charge/discharge techniques. The as-prepared Fe3O4/C core-shell nanorods show an initial lithium storage capacity of 1120 mAh/g and a reversible capacity of 394 mAh/g after 100 cycles, demonstrating better performance than that of the commercial graphite anode material.  相似文献   

3.
Hard carbon is regarded as promising anode materials for potassium-ion batteries(KIBs)owing to their low price and easy availability.However,the limited rate capability still needs to be improved.Herein,we demonstrate the fabrication of oxygen/sulfur co-doped hard carbon through a facile hydrolyzationsulfuration process of skimmed cotton.The simultaneous dopants significantly improve potassium ion diffusion rate.When served as the anode for KIBs,this hydrolyzed hard carbon delivered a high reversible capacity(409 mAh/g at 0.1 A/g),superior rate capability(135 mAh/g at 2 A/g)and excellent cyclability(about 120 mAh/g overt 500 cycles at 2 A/g).This work provides a facile strategy to prepare low-cost doped-hard carbon with superior potassium storage property.  相似文献   

4.
《中国化学快报》2023,34(2):107328
Through uncomplicated carbonation process, a carbon-embedded CoNiSe2/C nanosphere was synthesized from Ni-Co-MOF (metal-organic framework) precursor whose controllable structure and synergistic effect of bimetallic Ni/Co brought CoNiSe2/C anodes with high specific surface area (172.79 m2/g) and outstanding electrochemical performance. CoNiSe2/C anodes obtained reversible discharge capacities of 850.9 mAh/g at 0.1 A/g after cycling for 100 cycles. In addition, CoNiSe2/C exhibits excellent cycle stability and reversibility in the rate test at a current density of 0.1–2.0 A/g. When the current density returns to 0.5 A/g for 150 cycles, its discharge ratio the capacity is 330.8 mAh/g. Electrochemical impedance spectroscopy (EIS) tests suggested that CoNiSe2/C anodes had a lower charge transfer impedance of 130.02 Ω after 30 cycles. In-situ X-ray diffraction (XRD) tests confirmed the alloying mechanism of CoNiSe2/C which realized higher lithium storage capacity. This work affords substantial evidence for the extension of bimetallic selenides in secondary batteries, promoting the development of bimetallic selenides in anode materials for LIBs.  相似文献   

5.
Biomass-derived carbon materials have obtained great attention due to their sustainability,easy availability,low cost and environmentally benign.In this work,bamboo leaves derived nitrogen doped hierarchically porous carbon have been efficiently synthesized via an annealing approach,followed by an etching process in HF solution.Electrochemical measurements demonstrate that the unique porous structure,together with the inherent high nitrogen content,endow the as-derived carbon with excellent lithium/sodium storage performance.The porous carbon annealed at 700℃presents outstanding rate capability and remarkable long-term stability as anodes for both lithium-ion batteries and sodium-ion batteries.The optimized carbon delivers a high discharge capacity of 450 mAh/g after 500 cycles at the current density of 0.2 A/g for LIBs,and a discharge capacity of 180 mAh/g after 300 cycles at the current density of 0.1 A/g for SIBs.  相似文献   

6.
《中国化学快报》2023,34(1):107443
Due to the abundant sodium reserves and high safety, sodium ion batteries (SIBs) are foreseen a promising future. While, hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages. However, the unsatisfactory initial coulombic efficiency (ICE) is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application. Herein, with spherical nano SiO2 as pore-forming agent, gelatin and polytetrafluoroethylene as carbon sources, a multi-porous carbon (MPC) material can be easily obtained via a co-pyrolysis method, by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases. As a result, the MPC anode exhibited remarkable ICE of 83% and a high rate capability (208 mAh/g at 5 A/g) when used in sodium-ion half cells. Additionally, coupling with Na3V2(PO4)3 as the cathode to assemble full cells, the as-fabricated MPC//NVP full cell delivered a good rate capability (146 mAh/g at 5 A/g) as well, implying a good application prospect the MPC anode has  相似文献   

7.
Metal selenides are promising anodes for sodium-ion batteries (SIBs) due to the high theoretical capacity through conversion reaction mechanism. However, developing metal selenides with superior electrochemical sodium-ion storage performance is still a great challenge. In this work, a novel composite material of free-standing NiSe2 nanoparticles encapsulated in N-doped TiN/carbon composite nanofibers with carbon nanotubes (CNTs) in-situ grown on the surface (NiSe2@N-TCF/CNTs) is prepared by electrospinning and pyrolysis technique. In this composite materials, NiSe2 nanoparticles on the surface of carbon nanofibers were encapsulated into CNTs, thus avoiding aggregation. The in-situ grown CNTs not only improve the conductivity but also act as a buffer to accommodate the volume expansion. TiN inside the nanofibers further enhances the conductivity and structural stability of carbon-based nanofibers. When directly used as anode for SIBs, the NiSe2@N-TCF/CNT electrode delivered a reversible capacity of 392.1 mAh/g after 1000 cycles and still maintained 334.4 mAh/g even at a high rate of 2 A/g. The excellent sodium-ion storage performance can be attributed to the fast Na+ diffusion and transfer rate and the pseudocapacitance dominated charge storage mechanism, as is evidenced by kinetic analysis. The work provides a novel approach to the fabrication of high-performance anode materials for other batteries.  相似文献   

8.
《中国化学快报》2021,32(10):3113-3117
The research of borate materials as sodium-ion batteries (SIBs) anode is still in the early stages, but the boron polyoxoanions are attracting intense interest due to their low atomic weight and high electronegative features. In this work, FeBO3 was prepared with low-cost raw materials and evaluated as SIBs anode. The FeBO3 shows a high reversible capacity of 328 mAh/g at the current density of 0.4 A/g. In addition, the electrochemical performance of FeBO3 can be improved by carbon coating. The prepared carbon-coated FeBO3 composite has a reversible capacity of 426 mAh/g (at 0.4 A/g) and an outstanding rate capability of 272 mAh/g (at 1.6 A/g). Furthermore, the sodium storage mechanism of FeBO3 was studied by in-situ XRD and ex-situ XPS.  相似文献   

9.
The optimization of electrolyte formulation and the resulting change in the properties of the solid electrolyte interfacial film (SEI) are the key to affecting the cycle stability of sodium ion batteries at high temperatures. Traditional sodium ion electrolytes are prone to decomposition at high temperatures, which leads to a rapid decline in battery performance. Herein, we use an effective strategy to construct a SEI film on hard carbon anodes by introducing self-developed synthetic sodium-difluoro(oxalate)borate (NaODFB)-based ethers electrolyte. This study aims to analyze the compatibility between NaODFB-based electrolyte and hard carbon by theoretical calculations and experimental analysis including Na/Cu cells,In-suit EIS and cyclic voltammetry curves at different scan rates. The results indicate that the Na/HC cells with NaODFB-based electrolyte has excellent cycling stability at 55 °C. The battery delivers a high reversible capacity of 249.9 mAh/g at 100 mA/g due to the stable SEI riched in inorganic substances. This work provides guidance and ideas for the design of sodium-ion battery electrolyte at high temperatures in the future.  相似文献   

10.
Silicon/carbon composite materials are prepared by pyrolysis of pitch embedded with graphite and silicon powders. As anode for lithium ion batteries, its initial reversible capacity is 800–900 mAh/g at 0.25 mA/cm2 in a voltage range of 0.02/1.5 V vs. Li. The material modification by adding a small amount of CaCO3 into precursor improves the initial reversibility (η1=84%) and suppresses the capacity fade upon cycling. A little higher insertion voltage of the composites than commercial CMS anode material improves the cell safety in the high rate charging process.  相似文献   

11.
A hydrogen peroxide initiated sol-gel process involving molybdenum transformation in the presence of dopamine (Dopa) hydrochloride excess produced the metastable precipitate composed of polydopamine (PDopa) spheres coated with Dopa preintercalated molybdenum oxide, (Dopa)xMoOy@PDopa. The hydrothermal treatment (HT) of the (Dopa)xMoOy@PDopa precursor resulted in the simultaneous carbonization of Dopa and molybdenum reduction generating MoO2 nanoplatelets distributed and confined on the surface of the Dopa-derived carbon matrix (HT-MoO2/C). The consecutive annealing (An) of the HT-MoO2/C sample at 600 °C under Ar atmosphere led to the formation of MoO2 with increased Mo oxidation state and improved structural stability (AnHT-MoO2/C). Annealing had also further facilitated interaction between the molybdenum-derived and Dopa-derived components resulting in the modification of the carbon matrix confirmed by Raman spectroscopy. Morphology of both materials is best described as Dopa-derived carbon spheres decorated with MoO2 nanoplatelets. These integrated metal oxide and carbon structures were tested as electrodes for lithium-ion batteries in the potential window that corresponds to the intercalation mechanism of charge storage. The AnHT-MoO2/C electrode showed enhanced electrochemical activity, with an initial specific discharge capacity of 260 mAh/g and capacity retention of 67% after 50 cycles, compared to the HT-MoO2/C electrode which exhibited an initial specific discharge capacity of 235 mAh g?1 and capacity retention of 47% after 50 cycles. The rate capability experiments revealed that the capacity of 93 mAh/g and 120 mAh/g was delivered by the HT-MoO2/C and AnHT-MoO2/C electrodes, respectively, when the current density was increased to 100 mA/g. The improved specific capacity, electrochemical stability, and rate capability achieved after annealing were attributed to higher crystallinity of MoO2, increased oxidation state of Mo, and formation of the tighter MoO2/carbon contact accompanied by the annealing assisted interaction between MoO2 and Dopa-derived carbon.  相似文献   

12.
Carbon nanotube/cobalt oxide core-shell one-dimensional nanostructures were prepared via a hydrothermal synthesis method, in which nanosize cobalt oxide crystals were homogeneously coated on the surface of carbon nanotubes. The morphologies and crystal structures of the as-prepared core-shell nanocomposites were analysed by X-ray diffraction, field emission gun scanning electron microscopy, and transmission electron microscopy. When applied as anodes in lithium-ion cells, carbon nanotube/cobalt oxide core-shell nanostructures exhibited an initial lithium storage capacity of 1250 mAh/g and a stable capacity of 530 mAh/g over 100 cycles. The good electrochemical performance could be attributed to the nanocrystalline cobalt oxide and the unique core-shell one-dimensional nanostructures.  相似文献   

13.
《中国化学快报》2023,34(8):107929
Balancing cost and performance of porous carbon (PC) as anode for lithium-ion battery (LIBs) is the key to effectively promote commercial application. Herein, low-cost N-doped PC (NPC-Ts, T = 600, 750 and 900 °C) were facilely prepared in batches via one-pot pyrolysis of agar with different carbonization temperature. The NPC-750 with specific surface area of 2914 m2/g and N content of 2.84% exhibits an ultrahigh reversible capacity of 1019 mAh/g at 0.1 A/g after 100 cycles and 837 mAh/g at 1 A/g after 500 cycles. Remarkably, the resulting LIBs exhibit an ultrafast charge-discharge feature with a remarkable capacity of 281 mAh/g at 10 A/g and a superlong cycle life with a capacity retention of 87% after 5000 cycles at 10 A/g. Coupling with LiFePO4 cathode, the fabricated lithium-ion full cells possess high capacity, excellent rate and cycling performances (125 mAh/g at 100 mA/g, capacity retention of 95%, after 220 cycles), highlighting the practicability of this NPC-750 as the anode materials.  相似文献   

14.
梁振浪  杨耀  李豪  刘丽英  施志聪 《电化学》2021,27(2):177-184
以聚丙烯腈、石油沥青和花生壳为前驱体,在1200℃下碳化制备三种不同的硬碳材料.通过扫描电子显微、X射线衍射、氮气吸附/脱附测试和拉曼光谱等方法探究不同前驱体所制备的硬碳材料的表面形貌和物相结构.通过恒流充放电测试考察了这三种硬碳负极材料的电化学性能.结果表明,花生壳基硬碳的初始放电比容量最高,但首圈库仑效率最低,石油...  相似文献   

15.
The demand for efficient and cheap electrochemical storage devices is very high today. Na-ion batteries are emerging as a promising alternative to Li-ion batteries for large-scale applications because of the much larger abundance of sodium. Among the different negative electrode materials allowing Na insertion at low potentials, hard carbons are the materials with the best electrochemical performances reported so far. Here we investigate the synthesis of hard carbons from tannins, an abundant and cheap bio-sourced carbon precursor made of polyphenolic molecules. We show that by a well-controlled synthesis method and high-temperature pyrolysis (1600°C), a hard carbon with developed ultra-microporosity is obtained. This hard carbon delivers a reversible capacity of 306 mAh g?1 at C/20 with a first-cycle coulombic efficiency of 87%. To our knowledge, these electrochemical performances are among the best ever reported in the literature for biomass-derived hard carbons.  相似文献   

16.
High-perfo rmance anodes of sodium ion batteries(SIBs)largely depends on rational architecture design and binder-free smart hybridization.Herein,we report TiC/C core/shell nanowires arrays prepared by a one-step chemical vapor deposition(CVD)method and apply it as the anode of SIBs for the first time.The conductive TiC core is intimately decorated with carbon shell.The as-obtained TiC/C nanowires are homogeneously grown on the substrate and show core/shell heterostructure and porous architecture with high electronic conductivity and reinforced stability.Owing to these merits,the TiC/C electrode displays good rate performance and outstanding cycling performance with a capacity of 135.3 mAh/g at 0.1 A/g and superior capacity retention of 90.14%after 1000 cycles at 2 A/g.The reported strategy would provide a promising way to construct binder-free arrays electrodes for sodium ion storage.  相似文献   

17.
Bin Cao  Xifei Li 《物理化学学报》2020,36(5):1905003-0
钠离子电池是目前新兴的低成本储能技术,因在大规模电化学储能中具有较好的应用前景而受到了国内外学者广泛的关注与研究。作为钠离子电池的关键电极材料之一,非石墨的炭质材料因具有储钠活性高、成本低廉、无毒无害等诸多优点,而被认为是钠离子电池实际应用时负极的最佳选择。本文详细综述了目前钠离子电池炭基负极材料的研究进展,重点介绍了炭质材料的储钠机理与特性,分析了炭材料结构与电化学性能之间的关系,探讨了其存在的问题,为钠离子电池炭基负极材料的发展提供有益的认识。  相似文献   

18.
Carbonaceous nanomaterials with porous structure have become the highly promising anode materials for potassium-ion batteries(PIBs) due to their abundant resources, low-cost, and excellent conductivity. Nevertheless, the sluggish reaction kinetics and inferior cycling life caused by the large radius of K ions severely restrict their commercial development. Herein, B,N co-doped hierarchically porous carbon nanosheets(BNPC) are achieved via a facile template-assisted route, followed by a simple on...  相似文献   

19.
A composite of silica (SiO2) and hard carbon was prepared by hydrothermal reaction. Special attention was paid to the characterization of the possible electrochemical reduction of nano-SiO2 in the composite. Evidence by solid-state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) and high lithium storage capacity of the composite prove the electrochemical reduction of nano-SiO2 and the formation of Li4SiO4 and Li2O as well as Si in the first-discharge. The reversible lithium storage capacity of the nano-SiO2 is as high as 1675 mAh/g.  相似文献   

20.
Sodium-ion batteries(SIBs)have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications.Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost,abundant availability and excellent structural stability.Pitch,with high carbon content and low cost,is an ideal raw precursor to prepare carbon materials for large-scale applications.Nevertheless,the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances,which are unfavorable for Na ion storage.Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials.This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon’s morphology and structure regulation strategies,including morphology adjustment,heteroatoms doping,fabricating heterostructures,and the increase of the degree of disorder.Besides,the advantages,present challenges,and possible solutions to current issues in pitch-based carbon anode are discussed,with the highlight of future research directions.This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号