首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2 reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by ?86±2 mV/pH during CO2RR, which can be used to directly quantify the change in the local pH near the catalyst surface during electrolysis. We then applied this methodology to investigate the role of cations in affecting the local pH during CO2RR and find that during CO2RR to CO on Au in an MHCO3 buffer (where M is an alkali metal), the experimentally measured local basicity decreased in the order Li+ > Na+ > K+ > Cs+, which agreed with an earlier theoretical prediction by Singh et al. Our results also reveal that the formation of CO is independent of the cation. In summary, RRDE is a versatile tool for detecting local pH change over a diverse range of CO2RR catalysts. Additionally, using the product itself (i.e. CO) as the local pH probe allows us to investigate CO2RR without the interference of additional probe molecules introduced to the system. Most importantly, considering that most CO2RR products have pH‐dependent oxidation, RRDE can be a powerful tool for determining the local pH and correlating the local pH to reaction selectivity.  相似文献   

2.
The electrocatalytic CO2 reduction reaction (CO2RR) is one of the key technologies of the clean energy economy. Molecular-level understanding of the CO2RR process is instrumental for the better design of electrodes operable at low overpotentials with high current density. The catalytic mechanism underlying the turnover and selectivity of the CO2RR is modulated by the nature of the electrocatalyst, as well as the electrolyte liquid, and its ionic components that form the electrical double layer (EDL). Herein we demonstrate the critical non-innocent role of the EDL for the activation and conversion of CO2 at a high cathodic bias for electrocatalytic conversion over a silver surface as a representative low-cost model cathode. By using a multiscale modeling approach we demonstrate that under such conditions a dense EDL is formed, which hinders the diffusion of CO2 towards the Ag111 electrocatalyst surface. By combining DFT calculations and ab initio molecular dynamics simulations we identify favorable pathways for CO2 reduction directly over the EDL without the need for adsorption to the catalyst surface. The dense EDL promotes homogeneous phase reduction of CO2via electron transfer from the surface to the electrolyte. Such an outer-sphere mechanism favors the formation of formate as the CO2RR product. The formate can undergo dehydration to CO via a transition state stabilized by solvated alkali cations in the EDL.

In addition to the commonly accepted inner-sphere mechanism for e transfer, we show that an outer-sphere electron transfer from the cathode to CO2 is operable at high overpotentials.  相似文献   

3.
We report a new strategy to prepare a composite catalyst for highly efficient electrochemical CO2 reduction reaction (CO2RR). The composite catalyst is made by anchoring Au nanoparticles on Cu nanowires via 4,4′‐bipyridine (bipy). The Au‐bipy‐Cu composite catalyzes the CO2RR in 0.1 m KHCO3 with a total Faradaic efficiency (FE) reaching 90.6 % at ?0.9 V to provide C‐products, among which CH3CHO (25 % FE) dominates the liquid product (HCOO?, CH3CHO, and CH3COO?) distribution (75 %). The enhanced CO2RR catalysis demonstrated by Au‐bipy‐Cu originates from its synergistic Au (CO2 to CO) and Cu (CO to C‐products) catalysis which is further promoted by bipy. The Au‐bipy‐Cu composite represents a new catalyst system for effective CO2RR conversion to C‐products.  相似文献   

4.
Formate and CO are competing products in the two-electron CO2 reduction reaction (2e CO2RR), and they are produced via *OCHO and *COOH intermediates, respectively. However, the factors governing CO/formate selectivity remain elusive, especially for metal–carbon–nitrogen (M–N–C) single-atom catalysts (SACs), most of which produce CO as their main product. Herein, we show computationally that the selectivity of M–N–C SACs is intrinsically associated with the CO2 adsorption mode by using bismuth (Bi) nanosheets and the Bi–N–C SAC as model catalysts. According to our results, the Bi–N–C SAC exhibits a strong thermodynamic preference toward *OCHO, but under working potentials, CO2 is preferentially chemisorbed first due to a charge accumulation effect, and subsequent protonation of chemisorbed CO2 to *COOH is kinetically much more favorable than formation of *OCHO. Consequently, the Bi–N–C SAC preferentially produces CO rather than formate. In contrast, the physisorption preference of CO2 on Bi nanosheets contributes to high formate selectivity. Remarkably, this CO2 adsorption-based mechanism also applies to other typical M–N–C SACs. This work not only resolves a long-standing puzzle in M–N–C SACs, but also presents simple, solid criteria (i.e., CO2 adsorption modes) for indicating CO/formate selectivity, which help strategic development of high-performance CO2RR catalysts.

This report discloses a nontrivial role of the CO2 adsorption mode in governing the CO/formate selectivity of single-atom catalysts towards two-electron CO2 reduction.  相似文献   

5.
6.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

7.
《中国化学快报》2023,34(8):108120
Electrochemical reduction of CO2 (CO2RR) to value-added chemicals is an attractive strategy for greenhouse gas mitigation and carbon recycle. Carbon material is one of most promising electrocatalysts but its product selectivity is limited by few modulating approaches for active sites. Herein, the predominant pyridinic N-B sites (accounting for 80% to all N species) are fabricated in hierarchically porous structure of graphene nanoribbons/amorphous carbon. The graphene nanoribbons and porous structure can accelerate electron and ion/gas transport during CO2RR, respectively. This carbon electrocatalyst exhibits excellent selectivity toward CO2 reduction to CH4 with the faradaic efficiency of 68% at −0.50 V vs. RHE. As demonstrated by density functional theory, a proper adsorbed energy of *CO and *CH2O are generated on the pyridinic N-B site resulting into high CH4 selectivity. Therefore, this study provides a novel method to modulate active sites of carbon-based electrocatalyst to obtain high CH4 selectivity.  相似文献   

8.
Current techno-economic evaluation manifests that the electrochemical CO2 reduction reaction (eCO2RR) to CO is very promising considering its simple two-electron transfer process, minimum cost of electricity, and low separation cost. Herein, we report a Sn-modification strategy that can tune the local electronic structure of Cu with an appropriate valence. The as-prepared catalysts can alter the broad product distribution of Cu-based eCO2RR to predominantly generate CO. CO faradaic efficiency (FE) remained above 96% in the wide potential range of −0.5 to −0.9 V vs. the reversible hydrogen electrode (RHE) with CO partial current density up to 265 mA cm−2. The catalyst also had remarkable stability. Operando experiments and density functional theory calculations demonstrated that the surface Cuδ+ sites could be modulated and stabilized after introducing Sn. The Cuδ+ sites with low positive valence were conducive to regulating the binding energy of intermediates and resulted in high CO selectivity and maintained the stability of the catalyst. Additionally, scaling up the catalyst into a membrane electrode assemble system (MEA) could achieve a high overall current of 1.3 A with exclusive and stable CO generation.

Sn-stabilized Cuδ+ electrocatalysts have been prepared, achieving highly selective CO2-to-CO in a wide potential range. The modifier Sn could tune the electronic structure of Cu, resulting in high reactivity and selectivity for CO production.  相似文献   

9.
Cu-based catalysts have shown structural instability during the electrochemical CO2 reduction reaction (CO2RR). However, studies on monometallic Cu catalysts do not allow a nuanced differentiation between the contribution of the applied potential and the local concentration of CO as the reaction intermediate since both are inevitably linked. We first use bimetallic Ag-core/porous Cu-shell nanoparticles, which utilise nanoconfinement to generate high local CO concentrations at the Ag core at potentials at which the Cu shell is still inactive for the CO2RR. Using operando liquid cell TEM in combination with ex situ TEM, we can unequivocally confirm that the local CO concentration is the main source for the Cu instability. The local CO concentration is then modulated by replacing the Ag-core with a Pd-core which further confirms the role of high local CO concentrations. Product quantification during CO2RR reveals an inherent trade-off between stability, selectivity and activity in both systems.

The stability of bimetallic AgCu and PdCu catalysts for electrochemical CO2RR is investigated using the combination of operando and ex situ TEM. The local CO concentration is identified as the main link between activity, stability and selectivity.  相似文献   

10.
The electrochemical carbon dioxide reduction reaction (CO2RR) to C2 chemicals has received great attention. Here, we report the cuprous oxide (Cu2O) nanocubes cooperated with silver (Ag) nanoparticles via the replacement reaction for a synergetic CO2RR. The Cu2O-Ag tandem catalyst exhibits an impressive Faradaic efficiency (FE) of 72.85% for C2 products with a partial current density of 243.32 mA·cm−2. The electrochemical experiments and density functional theory (DFT) calculations reveal that the introduction of Ag improves the intermediate CO concentration on the catalyst surface and meanwhile reduces the C-C coupling reaction barrier energy, which is favorable for the synthesis of C2 products.  相似文献   

11.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

12.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen‐rich metal–organic framework (Zn‐MOF‐74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of ?0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at ?0.55 V vs. RHE, one of the highest values among NPC‐based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost‐effective alternatives to noble‐metal CO2RR electrocatalysts for practical applications.  相似文献   

13.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

14.
Nitrogen‐doped carbon materials (N‐Cmat) are emerging as low‐cost metal‐free electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR), although the activities are still unsatisfactory and the genuine active site is still under debate. We demonstrate that the CO2RR to CO preferentially takes place on pyridinic N rather than pyrrolic N using phthalocyanine (Pc) and porphyrin with well‐defined N‐Cmat configurations as molecular model catalysts. Systematic experiments and theoretic calculations further reveal that the CO2RR performance on pyridinic N can be significantly boosted by electronic modulation from in‐situ‐generated metallic Co nanoparticles. By introducing Co nanoparticles, Co@Pc/C can achieve a Faradaic efficiency of 84 % and CO current density of 28 mA cm?2 at ?0.9 V, which are 18 and 47 times higher than Pc/C without Co, respectively. These findings provide new insights into the CO2RR on N‐Cmat, which may guide the exploration of cost‐effective electrocatalysts for efficient CO2 reduction.  相似文献   

15.
Electrochemical CO2 reduction reaction (CO2RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2H4). However, achieving high C2H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2H4 with a current density of 497.2 mA cm−2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4. The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2RR. Furthermore, theoretical calculations demonstrate that the Cuδ+/Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.  相似文献   

16.
Tin (Sn)-based oxides have been proved to be promising catalysts for the electrochemical CO2 reduction reaction (CO2RR) to formate (HCOO). However, their performance is limited by their reductive transformation into metallic derivatives during the cathodic reaction. This paper describes the catalytic chemistry of a Sr2SnO4 electrocatalyst with a Ruddlesden–Popper (RP) perovskite structure for the CO2RR. The Sr2SnO4 electrocatalyst exhibits a faradaic efficiency of 83.7% for HCOO at −1.08 V vs. the reversible hydrogen electrode with stability for over 24 h. The insertion of the SrO-layer in the RP structure of Sr2SnO4 leads to a change in the filling status of the anti-bonding orbitals of the Sn active sites, which optimizes the binding energy of *OCHO and results in high selectivity for HCOO. At the same time, the interlayer interaction between interfacial octahedral layers and the SrO-layers makes the crystalline structure stable during the CO2RR. This study would provide fundamental guidelines for the exploration of perovskite-based electrocatalysts to achieve consistently high selectivity in the CO2RR.

This paper describes how the insertion of a SrO-layer in Ruddlesden–Popper Sr2SnO4 perovskite electrocatalysts promotes CO2 reduction towards formate via *OCHO intermediate. A faradaic efficiency of 83.7% and stability for over 24 h were obtained.  相似文献   

17.
Heterogeneous Ni–N–C single-atom catalysts (SACs) have attracted great research interest regarding their capability in facilitating the CO2 reduction reaction (CO2RR), with CO accounting for the major product. However, the fundamental nature of their active Ni sites remains controversial, since the typically proposed pyridinic-type Ni configurations are inactive, display low selectivity, and/or possess an unfavorable formation energy. Herein, we present a constant-potential first-principles and microkinetic model to study the CO2RR at a solid–water interface, which shows that the electrode potential is crucial for governing CO2 activation. A formation energy analysis on several NiNxC4−x (x = 1–4) moieties indicates that the predominant Ni moieties of Ni–N–C SACs are expected to have a formula of NiN4. After determining the potential-dependent thermodynamic and kinetic energy of these Ni moieties, we discover that the energetically favorable pyrrolic-type NiN4 moiety displays high activity for facilitating the selective CO2RR over the competing H2 evolution. Moreover, model polarization curves and Tafel analysis results exhibit reasonable agreement with existing experimental data. This work highlights the intrinsic tetrapyrrolic coordination of Ni for facilitating the CO2RR and offers practical guidance for the rational improvement of SACs, and this model can be expanded to explore mechanisms of other electrocatalysis in aqueous solutions.

A constant-potential first-principles and microkinetic model is developed to uncover the nature of heterogeneous Ni–N–C catalysts. It highlights the crucial role of a pyrrolic-type NiN4 moiety in electrochemical CO2 reduction.  相似文献   

18.
The electrochemical CO2 reduction reaction (CO2RR) on RuO2 and RuO2-based electrodes has been shown experimentally to produce high yields of methanol, formic acid and/or hydrogen while methane formation is not detected. This CO2RR selectivity on RuO2 is in stark contrast to copper metal electrodes that produce methane and hydrogen in the highest yields whereas methanol is only formed in trace amounts. Density functional theory calculations on RuO2(110) where only adsorption free energies of intermediate species are considered, i.e. solvent effects and energy barriers are not included, predict however, that the overpotential and the potential limiting step for both methanol and methane are the same. In this work, we use both ab initio molecular dynamics simulations at room temperature and total energy calculations to improve the model system and methodology by including both explicit solvation effects and calculations of proton–electron transfer energy barriers to elucidate the reaction mechanism towards several CO2RR products: methanol, methane, formic acid, CO and methanediol, as well as for the competing H2 evolution. We observe a significant difference in energy barriers towards methane and methanol, where a substantially larger energy barrier is calculated towards methane formation than towards methanol formation, explaining why methanol has been detected experimentally but not methane. Furthermore, the calculations show why RuO2 also catalyzes the CO2RR towards formic acid and not CO(g) and methanediol, in agreement with experimental results. However, our calculations predict RuO2 to be much more selective towards H2 formation than for the CO2RR at any applied potential. Only when a large overpotential of around −1 V is applied, can both formic acid and methanol be evolved, but low faradaic efficiency is predicted because of the more facile H2 formation.

Energy barriers are calculated for the electrochemical CO2 reduction reaction on the RuO2(110) surface towards methanol, methane, formic acid, methanediol, CO and the competing H2 formation and compared with experimental literature.  相似文献   

19.
Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage.However,the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly.Here in this work,cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide(DMSO) based Li-CO2 ba...  相似文献   

20.
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im ) with imidazole groups as a new electrocatalyst for eCO2RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm−2. No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm−2. The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号