首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Hollow silica microspheres were synthesized by non-polymeric sol–gel/emulsion technique using tetra ethyl orthosilicate (TEOS) as a source of silica. A sol mixture of TEOS, water, ethanol and acid was emulsified in a solution of light paraffin oil and surfactant (Span-80). Calcined spheres were density fractionated between density ranges: <1.0, 1.0–1.594, 1.594–1.74 and >1.74 g cm−3. The samples were characterized by optical and scanning electron microscopy with energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and laser diffraction size analyzer. Spheres of densities lower than 1.74 g cm−3 were found to be hollow as observed from scanning electron microscopy (SEM) images and their yield was maximized to 100% by using a specific TEOS volume ratio with respect to volumes of surfactant and oil. Decreasing the calcination temperature from 700 to 500 °C enhances the yield of hollow spheres emphasizing importance of slower diffusion kinetics at lower calcination temperature. Outer diameters of spheres were between 5 and 60 μm with mean diameter expectedly increasing with increase in TEOS sol volume and with decrease in sphere density. It is proposed that silica shells form via hydrolysis and polycondensation at oil–water/ethanol interface in the water-in-oil emulsion, which subsequently form hollow spheres on removal of water–ethanol during calcination.  相似文献   

2.
分别以过硫酸钾和偶氮二异丁基脒盐酸盐为引发剂,以聚乙烯吡咯烷酮(PVP)为分散剂,在水中引发苯乙烯聚合制备了2种表面分别带负电性和正电性基团的聚苯乙烯(PS)模板微球.在氨水催化下,利用正硅酸乙酯的水解缩合,形成PS/SiO_2复合微球,去除模板后得到中空SiO_2微球,并对其进行FTIR、电子显微镜、TGA以及氮气吸附等分析表征.结果表明,PS模板微球表面的电性决定了OH-的分布,从而导致PS模板微球表面SiO_2壳层不同的形成机制.当以表面带负电的PS微球为模板时,可得到树莓状的中空SiO_2微球;而以表面带正电的PS微球为模板时,得到是表面光滑的,具有介孔结构的中空SiO_2微球.  相似文献   

3.
Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl or-thosilicate (TEOS) on the surface of PNIPAM template at 50 oC. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy-drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.  相似文献   

4.
Mesoporous silica materials with a variety of morphologies, such as monodisperse microspheres, gigantic hollow structures comprising a thin shell with a hole, and gigantic hollow structures consisting of an outer thin shell and an inner layer composed of many small spheres, have been readily synthesized in mixed water-ethanol solvents at room temperature using cetyltrimethylammonium bromide (CTAB) as the template. The obtained mesoporous silica generally shows a disordered mesostructure with typical average pore sizes ranging from 3.1 to 3.8 nm. The effects of the water-to-ethanol volume ratio (r), the volume content of tetraethyl orthosilicate TEOS (x), and the CTAB concentration in the solution on the final morphology of the mesoporous silica products have been investigated. The growth process of gigantic hollow shells of mesoporous silica through templating emulsion droplets of TEOS in mixed water-ethanol solution has been monitored directly with optical microscopy. Generally, the morphology of mesoporous silica can be regulated from microspheres through gigantic hollow structures composed of small spheres to gigantic hollow structures with a thin shell by increasing the water-to-ethanol volume ratio, increasing the TEOS volume content, or decreasing the CTAB concentration. A plausible mechanism for the morphological regulation of mesoporous silica by adjusting various experimental parameters has been put forward by considering the existing state of the unhydrolyzed and partially hydrolyzed TEOS in the synthesis system.  相似文献   

5.
The formation of silica from a tetraalkoxysilane in a sol-gel process usually requires a highly polar, typically aqueous, medium that aids in the hydrolysis of the silane and leads to electrostatic stabilization of the growing silica particles. Formation of such silica particles in a hydrophobic medium is much more challenging. We report the formation of silica microspheres within silicone oils (hydroxy-terminated poly(dimethylsiloxane), HO-PDMS) during elastomer cure using atmospheric humidity in a one-pot and one-step synthesis. Using tetraethyl orthosilicate (TEOS) as both cross-linker and silica precursor, and aminopropyl-terminated dimethylsiloxane oligomer (AT-PDMS) as a catalytic surfactant, silica particles of low polydispersity formed near or at the air interface of the elastomer: the presence of a hydrophilic polymer, poly(ethylene glycol) (PEG), had an indirect effect on the particle formation, as it assisted with water transmission into the system, which resulted in particle formation over a wider range of parameters and facilitated silicone elastomer cure further away from the air interface. Depending on the relative humidity during cure, the sizes of particles presenting at the air interface varied from ~6-7 μm under ambient conditions (20-30%RH) to ~7-9 μm at high relative humidity (90% RH). The origin of the controlled particle synthesis is ascribed to the relative solubility of the catalyst and the efficiency of water permeation through the silicone matrix. AT-PDMS preferentially migrates to the air interface, as shown by ninhydrin staining, where it both catalyzes alkoxysilane hydrolysis and condensation, and stabilizes the growing silica particles prior to aggregation. Since reactions in the presence of this catalyst are slow, TEOS can migrate from within the pre-elastomer body to the interface faster than water can penetrate the silicone, such that the main locus of hydrolysis/condensation leading both to silica formation and elastomer cross-linking is at the air interface.  相似文献   

6.
以弱阳离子交换聚合物微球(WCX)为模板、N-三甲氧基硅基丙基-N,N,N-三甲基氯化铵(TMSPTMA)为结构导向剂、四乙氧基硅烷(TEOS)为硅胶前驱体,在三乙醇胺弱碱催化作用下,水解缩合形成有机聚合物与二氧化硅复合微球,将此复合微球煅烧后得到大孔二氧化硅微球。探索了不同反应条件对二氧化硅微球的形貌、表面结构和分散性的影响;当TMSPTMA、TEOS与三乙醇胺的体积比为1∶2∶2时可以得到孔径在50~150 nm之间、粒径在2μm左右的硅胶微球。对所制备的大孔硅胶微球表面进行C18(十八烷基二甲基氯硅烷)键合修饰,然后将键合的填料装填到50 mm×4.6 mm的色谱柱中,考察了其对常见的几种标准蛋白质和市售大豆分离蛋白质的分离效果,结果显示这种填料在高效液相色谱蛋白质分离中具有一定的潜力。  相似文献   

7.
By using the positive charged polystyrene (PS) microsphere as template, mono-disperse amino-(-NH(2)) functionalized hollow silica microspheres (HSMS-NH(2)) with ~1310 nm in diameter and uniform shells were successfully prepared with a modified sol-gel process. The amino functionalized silica were coated on the PS microspheres via ammonia catalysis, co-hydrolysis and condensation of TEOS and APTES, and then the PS templates were selectively dissolved in THF solution to form the functional hollow microspheres. The controllable thickness (35-85 nm) and amino density (2.46×10(-5)-6.18×10(-5) mol/g) of the shells could be facilely tuned by changing the amount of TEOS and APTES. In vitro ultrasound images of as-prepared HSMS-NH(2) with different concentrations in the physiological saline solution were further investigated. The obvious signal enhancement indicates that as-prepared HSMS-NH(2) has a great potential application for ultrasound imaging.  相似文献   

8.
Porous silica hollow particles have been fabricated by a one-step approach in water in oil (W/O) inverse emulsion. Ammonia water droplets stabilized by alkyl-phenol polyoxyethylene ether (TX-4) in tetraethoxysilane (TEOS)/cyclohexane solution act as soft templates for constructing the silica hollow particles. The formation mechanism is discussed in detail from the equilibrium between the diffusion and reactions of TEOS and its products (hydrolysates and polycondensates) on the W/O interface. The structure and morphology of the resultant silica hollow particles are well controlled by changing the parameters involving the concentration of TX-4, TEOS, and ammonia. The synthesized products have been characterized using transmission electron microscopy, scanning electron microscopy, solid state NMR, and nitrogen adsorption–desorption measurements.  相似文献   

9.
单分散聚丙烯酸丁酯-二氧化硅核壳粒子的制备   总被引:3,自引:0,他引:3  
近年来,有机-无机核壳材料因其具有可调的光、电、磁等特性而备受关注.无机物外壳可以增强粒子的热力学稳定性、机械强度和抗拉性能.高分子乳胶粒内核具有弹性,且易成膜,外部包覆无机物的乳胶粒可结合两者特性并产生协同效应.  相似文献   

10.
首先通过无皂乳液聚合法制得表面含羧基、粒径为360 nm的单分散聚苯乙烯(PSt)种子乳液,并在EtOH/H2O混合介质中用γ-氨丙基三乙氧基硅烷(KH-550)对其进行改性,制得表面含有活性硅乙氧基并带有正电荷的改性PSt乳胶粒,然后再加入原硅酸乙酯(TEOS)进行共水解与共缩聚反应,制备出了核壳结构PSt/SiO2...  相似文献   

11.
Hollow inorganic-organic hybrid microspheres, such as silica, titania, and zirconia, with interior poly(methacrylic acid) (PMAA) functionalized shell were synthesized by a general method containing a two-stage reaction. The hollow inorganic shell-layer with interior polymeric component was formed over the PMAA template during the second-stage controlled hydrolysis of inorganic precursors together with disintegration of PMAA cores and adhering to the interior wall of the silica during the drying process due to the capillary force as well as the competitive hydrogen bond interaction. In this process, PMAA microspheres were prepared by distillation precipitation polymerization of methacrylic acid (MAA) in acetonitrile as the first-stage reaction. The present work elaborately investigated the effects of the reaction conditions, including the amount of the tetraethyl orthosilicate (TEOS) precursors and the amount of ammonium hydroxide catalyst on the morphology and structure of the resultant hollow composite microspheres, which were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption.  相似文献   

12.
本文以硬模板与软模板结合的双模板方法(十六烷基三甲基溴化铵(CTAB)为介孔模板,聚苯乙烯(PS)球为中空模板),通过自组装制备出有良好分离性和单分散性且具有径向介孔的二氧化硅中空亚微米球.研究表明CTAB、TEOS的用量,催化剂的种类对二氧化硅中空亚微米球的形貌、壁厚、产品纯度等都有很大的影响.在保持其它实验条件不变的情况下,通过分别单独调节CTAB和TEOS的用量或同时调节CTAB和TEOS的用量,得出最佳原料配比是:TEOS/CTAB/NH3/乙醇/水的摩尔比是1:0.27:9.8:304:2955,TEOS/聚苯乙烯球的质量比是4/1.催化剂的种类对中空亚微米球的形貌也有较大影响,当NaOH(浓度为1 mol/L)的用量为0.05—0.10 mL时,生成由小粒子聚集而成的亚微米球;随着NaOH用量增大到0.10—0.20 mL,小粒子逐渐粘合在一起,亚微米球表面逐渐变光滑;进一步增大NaOH用量为0.20—0.30 mL则导致杂质小粒子的出现.在实验结果和文献报道的基础上,讨论并提出了径向有序介孔二氧化硅中空亚微米球的形成机理.  相似文献   

13.
Using the surface charged and acid dissolvable melamine formaldehyde (MF) microspheres as sacrificial hard templates, silica coated MF core?Cshell composite microspheres, denoted as MF@SiO2, were synthesized via a surfactant-assisted sol?Cgel process by using tetraethyl orthosilicate (TEOS) as silica source. Hollow SiO2 spheres with mesoporous shells were then obtained after selective removal of the MF cores and the pore directing surfactant by hydrochloric acid etching or calcinations in air. Interesting shrinkage phenomena were observed in both the hollow products derived from hydrochloric acid etching and calcinations. The influence of the ratio of MF sphere to TEOS and the removal method of the MF core on the size of the hollow spheres, the shell thickness and the shell surface roughness have been studied. The composition, the thermal stability, the morphology, the surface area and pore size distribution, the wall thickness and adsorption properties of the hollow spheres derived from hydrochloric acid etching and calcinations were also investigated and compared based on the FTIR, SEM, TEM, TGA, Nitrogen adsorption?Cdesorption and spectrophotometer techniques or measurements.  相似文献   

14.
The effect of 3-methacryloxypropyltrimethoxysilane (MPTMOS) on the nucleation of silica particles synthesized in a water?ethanol?ammonia?tetraethoxysilane (TEOS) mixture by the Stöber?Fink?Bohn method has been studied. It has been shown, using atomic force microscopy, that, as the content of MPTMOS in a TEOS + MPTMOS precursor mixture is increased from 0 to 12.5 mol %, the final silica particle size decreases from 470 to 10 nm, because the number of nucleation centers increases by several orders of magnitude. In contrast to TEOS, hydrolysis of MPTMOS yields a smaller amount of deprotonated orthosilicic acid monomers, the condensation of which is hindered by electrostatic repulsion. The polycondensation of electrically neutral products of MPTMOS hydrolysis gives rise to a larger number of nucleation centers in the reaction mixture.  相似文献   

15.
Aquasols containing silica nanoparticles with diameters of 75 to 95 nm were obtained directly by hydrolysis of 2 wt.% tetraethoxysilane (TEOS) in water in the presence of a non-ionic surfactant. The reaction was catalyzed by hydrochloric acid, ammonia, or sodium hydroxide. The particle size, which mainly depends on the concentration of TEOS in water, was determined by dynamic light scattering (DLS). Whereas the catalysts have almost no influence on the particle size, they very strongly affect the morphology of the silica particles formed. The dried SiO(2) particles obtained via the HCl-catalyzed reaction have film-forming properties and show no measurable BET surface area. SiO(2) particles prepared with ammonia as catalyst form nanoporous films on glass, and the BET surface area of the freeze-dried particles is 540 m(2)/g. Using sodium hydroxide as catalyst results in some agglomeration of uniform spherical particles with a BET surface area of 237 m(2)/g. (29)Si MAS NMR investigations of the freeze-dried particles provide information about the degree of condensation and the ratio of "free" hydroxyl groups. The silica aquasols described have a surprisingly high hydrophilizing effect on hydrophobic fibers (PP, PET). Silica nanoparticles of comparable diameters, prepared by the "St?ber method", dispersed in alcohol do not show any hydrophilizing properties worth to mention.  相似文献   

16.
This article presents a novel route to prepare hollow silica microspheres with well-defined wall thickness by using cross-linked polystyrene (PS) microspheres as templates with the assistance of supercritical carbon dioxide (SC-CO2). In this approach, the cross-linked PS templates can be firstly prepared via emulsifier-free polymerization method by using ethylene glycol dimethacrylate or divinylbenzene as cross-linkers. Then, the silica shell from the sol–gel process of tetraethyl orthosilicate (TEOS) which was penetrated into the PS template with the assistance of SC-CO2 was obtained. Finally, the hollow silica spheres were generated after calcinations at 600 °C for 4 h. The shell thickness of the hollow silica spheres could be finely tuned not only by adjusting the TEOS/PS ratio, which is the most frequently used method, but also by changing the pressure and aging time of the SC-CO2 treatment. Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscope were used to characterize these hollow silica spheres.  相似文献   

17.
A well-dispersible conducting polyaniline/silica hybrid is prepared by the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) on the surface of polyaniline in water/ethanol solution. It provides a simple and environmentally sound route for preparing the processable conducting polyaniline/silica hybrid at the nanometre level. The conductivity of polyaniline/silica hybrid is 2.43 S cm(-1) at 25 degrees C, and its powder is easily dispersed in the anhydrous ethanol or aqueous solution without any stabilizer. In addition, the structure, morphology and cyclic voltammorgram of this hybrid are also reported.  相似文献   

18.
单分散磁性P(St/BA/MAA)微球的制备   总被引:10,自引:0,他引:10  
在共沉淀法合成超细磁流体的基础上 ,以苯乙烯 (St)、丙烯酸丁酯 (BA)和甲基丙烯酸 (MAA)为共聚单体 ,在不同的介质体系中采用无皂乳液聚合法制备了单分散 ,粒径范围为 80~ 2 30nm的磁性P(St BA MAA)微球 .详细探讨了介质极性、磁流体中表面活性剂含量对磁性高分子微球粒径和单分散性的影响 .实验结果表明 ,在一定范围内随介质极性降低 ,磁性高分子微球的单分散性提高 ,随表面活性剂用量增加 ,单分散性变差 .总体来看 ,磁性高分子微球的单分散性与其表面静电斥力密切相关 ,过大或过小的静电斥力均会导致磁性高分子微球单分散性的降低 .  相似文献   

19.
由硅酸酯合成单分散二氧化硅中碳的化学形态   总被引:1,自引:0,他引:1  
单分散二氧化硅是指尺寸分布十分狭窄的二氧化硅颗粒.单分散颗粒在科学研究及工业应用中得到了广泛的应用[1].单分散二氧化硅由正硅酸有机酯在氨催化下于醇溶液中水解缩合得到.硅酸酯的水解和缩合反应可用如下反应描述.总的反应式为:nSi(OR)4+2nH20→nSiO2+4nROH1956年Kolbe[2]发现正硅酸乙酯(TEOS)在碱催化下于乙醇溶剂中水解反应有时会形成均一颗粒二氧化硅以来,许多学者对这一反应体系进行了较为广泛的研究,提出了双分子缩合成核机理、单分子叠加生长机理、表面反应控制生长机理、扩散控制生长机理和微晶核团聚生…  相似文献   

20.
This paper describes a method for fabricating spherical submicron-sized silica particles that contained magnetite nanoparticles (magnetite/silica composite particles). The magnetite nanoparticles with a size of ca. 10 nm were prepared according to the Massart method, and were surface-modified with carboxyethylsilanetriol. The fabrication of magnetite/silica composite particles was performed in water/ethanol solution of tetraethoxyorthosilicate with ammonia catalyst in the presence of the surface-modified magnetite nanoparticles. The magnetite/silica composite particles with a size of ca. 100 nm were successfully prepared at 0.05 M TEOS, 15 M water, and 0.8 M ammonia with injection of the magnetite nanoparticle colloid at 2 min after the initiation of hydrolysis reaction of TEOS. Magnetite concentration in the composite particles could be raised to 17.3 wt.% by adjustment of the injected amount of the magnetite colloid, which brought about the saturation magnetization of 7.5 emu/g for the magnetite/silica composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号