首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2023,34(3):107555
Recent studies have proposed that the high-valent iron species (such as FeIVO2+) rather than sulfate radical (SO4??) and hydroxyl radical (?OH) are the main reactive oxidant species (ROS) in Fe(II)/peroxydisulfate (PDS) system with the methyl phenyl sulfoxide (PMSO) as the FeIVO2+ probe. However, many operational factors may interfere with the accuracy of this method, so the contribution of FeIVO2+ calculated by this method is controversial. In this study, the possible effect of Fe(II) concentration, pollutant type, reducing agent, or coexisted anions on FeIVO2+ production and its corresponding contribution to the removal of target pollutants in the Fe(II)/PDS system were investigated in detail, and the intrinsic mechanisms involved were also explored. This study shows that ROS generation is a complex process in the Fe(II)/PDS system, and multiple combinatorial approaches are urgently required to deeply explore the contribution of ROS to the elimination of target contaminants.  相似文献   

2.
Zero-valent iron (Fe0) has recently been proposed as a potential candidate for the degradation of pharmaceuticals, because Fe0 can release dissolved iron species, activate molecular oxygen, and react with oxidant species. Additionally, due to its small particle size and large surface area, this catalyst can provide better degradation results, compared to traditional processes. This work focuses on the elimination of pharmaceuticals present in different water matrices, considering the potential harm that these substances can cause in the environment. The mechanisms of pharmaceutical removal using Fe0 particles include reduction, adsorption, precipitation, and oxidation processes. Most studies have focused on oxidation processes in the presence of Fe0 and radicals derived from oxidants such as hydrogen peroxide (H2O2), ozone (O3), peroxysulfate (SO52−), peroxodisulfate (S2O82−), and oxygen (O2). Most of the results have shown that high percentages of pharmaceuticals can be removed, degraded, and mineralized. The mechanisms of oxidation and the parameters that influence the degradation of pharmaceuticals, as well as the possible degradation pathways, are discussed here. This review provides information on trends of different processes that use Fe0, considering aspects such as particle size, type of matrix, the pharmaceuticals studied, and the results obtained that can improve understanding of new advances in the field of advanced oxidation processes (AOPs) for the degradation and elimination of pharmaceuticals.  相似文献   

3.
The application of advanced oxidation processes (AOPs) based on sulfate radicals for degrading persistent organic pollutants faces challenges due to the inefficient activation of peroxydisulfate (PDS) oxidant. Herein, a composite CoFe2O4/MoS2-xOy (CFM) catalyst consisting of CoFe2O4 nanoparticles uniformly dispersed on the nanosheets of oxygen-incorporated MoS2 (MoS2-xOy) with flower-like morphology are fabricated through a facile two-step hydrothermal method, which results in the enhanced activation of PDS and a highly efficient degradation of phenolic pollutants. The oxygen-doping in MoS2-xOy leads to unsaturated sulfur and active sites on the surface of MoS2 for accelerating the rate limiting step of FeIII/FeII reduction cycle in PDS-CFM reaction. Aiming at the refractory organic pollutants in actual coking wastewater, CFM co-catalyst is introduced into a hydrogel made up of polyvinyl alcohol (PVA) and coal-tar pitch oxides (PO) to construct a multifunctional CFM@PO/PVA hydrogel. Upon hybrid CFM@PO/PVA, the coupling of the enhanced AOP with solar-driven interfacial vapor generation (SIVG) technology contributes to the degradation efficiency, the removal rate of phenol in solution and the total organic carbon in coking wastewater can reach 98 % and 91 %, respectively. The integration of heterogeneous AOPs with SIVG system provides a feasible strategy for the eco-friendly efficient purification of industrial wastewater.  相似文献   

4.
《中国化学快报》2022,33(11):4828-4833
MIL-101(Fe)-NH2@Al2O3 (MA) catalysts were successfully synthesized by reactive seeding (RS) method on α-Al2O3 substrate, which demonstrated excellent photo-Fenton degradation performance toward fluoroquinolone antibiotics (i.e., norfloxacin, ciprofloxacin, and enrofloxacin). The structure and morphology of the obtained MA were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscope (AFM). The as-prepared MA could accomplish > 90% of norfloxacin degradation efficiency for 10 cycles’ photo-Fenton processes, owing to its excellent chemical and water stability. In addition, the effects of operational factors including H2O2 concentration, foreign ions, and pH on the photo-Fenton degradation of norfloxacin over MA were clarified. The ESR spectra further document that ?O2?, 1O2 and ?OH radicals are prominent in the decomposition process of antibiotic molecules. Finally, the plausible photo-Fenton norfloxacin degradation mechanisms were proposed and verified.  相似文献   

5.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

6.
3D-MoS2 can adsorb organic molecules and provide multidimensional electron transport pathways, implying a potential application for environment remediation. Here, we study the degradation of aromatic organics in advanced oxidation processes (AOPs) by a 3D-MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO). Exposed Mo4+ active sites on 3D-MoS2 can significantly improve the concentration and stability of Fe2+ in AOPs and keep the Fe3+/Fe2+ in a stable dynamic cycle, thus effectively promoting the activation of H2O2/peroxymonosulfate (PMS). The degradation rate of organic pollutants in the 3D-MoS2 system is about 50 times higher than without cocatalyst. After a 140 L pilot-scale experiment, it still maintains high efficiency and stable AOPs activity. After 16 days of continuous reaction, the 3D-MoS2 achieves a degradation rate of 120 mg L−1 antibiotic wastewater up to 97.87 %. The operating cost of treating a ton of wastewater is only US$ 0.33, suggesting huge industrial applications.  相似文献   

7.
3D‐MoS2 can adsorb organic molecules and provide multidimensional electron transport pathways, implying a potential application for environment remediation. Here, we study the degradation of aromatic organics in advanced oxidation processes (AOPs) by a 3D‐MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO). Exposed Mo4+ active sites on 3D‐MoS2 can significantly improve the concentration and stability of Fe2+ in AOPs and keep the Fe3+/Fe2+ in a stable dynamic cycle, thus effectively promoting the activation of H2O2/peroxymonosulfate (PMS). The degradation rate of organic pollutants in the 3D‐MoS2 system is about 50 times higher than without cocatalyst. After a 140 L pilot‐scale experiment, it still maintains high efficiency and stable AOPs activity. After 16 days of continuous reaction, the 3D‐MoS2 achieves a degradation rate of 120 mg L?1 antibiotic wastewater up to 97.87 %. The operating cost of treating a ton of wastewater is only US$ 0.33, suggesting huge industrial applications.  相似文献   

8.
Advanced oxidation processes (AOPs) have gained extensive attentions in organic decontamination in past decades. Iron-contained compound is an interesting material due to its adsorptive and catalytic performance, which has been applied widely in AOPs. Thus, graphene oxide (GO)-Fe3S4 composite was synthesized by a solvothermal process and assessed as an effective adsorptive and catalytic dual functional material in this work. The composite displayed prominent adsorptive and heterogeneous Fenton-like catalytic performance, which was affected by preparation condition and the reactive parameters in catalytic system. Under optimized reactive conditions, the GO-Fe3S4 composite yielded rapid degradation of vanillic acid, which the corresponding apparent rate constant was 1.81 × 10?1 min?1. Catalytic mechanism analysis revealed that the main oxygen species was hydroxyl radicals bounded on the surface of the composite. And the generation of ?O2 was contributed to the conversion of H2O2 to ?OH. The analysis of degradation intermediates of vanillic acid and p-hydroxybenzoic showed that these compounds could be mineralized to small molecules. The prominent enhanced heterogeneous Fenton-like catalytic performance of GO-Fe3S4 was due to a larger specific surface area, plenty of reductive active sites in the composite and a high mass transfer efficiency of oxidizing radicals in the reactive system.  相似文献   

9.
Degradation of methyl orange (MO) was carried out by the photo-Fenton process (Fe2+/H2O2/UV) and photo-Fenton-like processes (Fe3+/H2O2/UV, Fe2+/S2O82−/UV, and Fe3+/S2O82−/UV) at the acidic pH of 3 using hydrogen peroxide and ammonium persulfate (APS) as oxidants. Oxidation state of iron had a significant influence on the efficiency of photo-Fenton/photo-Fenton-like processes. It was found that a process with a source of Fe3+ ions as the catalyst showed higher efficiency compared to a process with the Fe2+ ion as the catalyst. H2O2 served as a better oxidant for both oxidation states of iron compared to APS. The lower efficiency of APS is attributed to the generation of excess protons which scavenges the hydroxyl radicals necessary for degradation. Further, the sulfate ions produced from S2O82− form a complex with Fe2+/Fe3+ ions thereby reducing the concentration of free iron ions in the solution. This process can also reduce the concentration of hydroxyl radicals in the solution. Efficiency of the various MO degradation processes follows the order: Fe3+/H2O2/UV, Fe3+/APS/UV, Fe2+/H2O2/UV, Fe2+/APS/UV.  相似文献   

10.
Fe3O4 anisotropic nanostructures that exhibit excellent catalytic performance are rarely used to catalyze Fenton‐like reactions because of the inevitable drawbacks resulting from traditional preparation methods. In this study, a facile, nontoxic, water‐based approach is developed for directly regulating a series of anisotropic morphologies of Fe3O4 nanostructures in a hydrogel matrix. In having the advantages of both the catalytic activity of Fe3O4 and the adsorptive capacity of an anionic polymer network, the hybrid nanocomposites have the capability to effect the rapid removal of cationic dyes, such as methylene blue, from water samples. Perhaps more interestingly, hybrid nanocomposites loaded with Fe3O4 nanorods exhibit the highest catalytic activity compared to those composed of nanoneedles and nanooctahedra, revealing the important role of nanostructure morphology. By means of scanning electrochemical microscopy, it is revealed that Fe3O4 nanorods can efficiently catalyze H2O2 decomposition and thus generate more free radicals (.OH, .HO2) for methylene blue degradation, which might account for their high catalytic activity.  相似文献   

11.
《中国化学快报》2020,31(10):2657-2660
Acetylene black (AB), as a kind of carbon material with large specific surface area, low density, strong electron transferability, is supposed to have great potential for application in advanced oxidation processes (AOPs). In this study, AB was utilized as a peroxydisulfate (PDS) activator for the catalytic degradation of sulfamethoxazole (SMX) in aqueous media. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) techniques, zeta potential and Raman spectra were employed to characterize the features of AB. To verify the excellent performance of AB/PDS systems, a series of control experiments were carried out. Compared to graphite/PDS and biochar/PDS system, AB/PDS system could complete degradation of SMX within 15 min. Besides, the effects of key factors including AB dosage, PDS dosage, initial pH and SMX concentration on SMX degradation in AB/PDS system were elucidated systematically. Furthermore, through the radical quenching experiments, it was proved that singlet oxygen (1O2) was dominantly responsible for the degradation of SMX. Finally, based on the experiment results and comprehensive analysis, a probable reaction mechanism of AB/PDS system for SMX degradation was proposed. This work suggests that AB has a good potential for tackling the hazardous pollutants in environmental remediation.  相似文献   

12.
This paper offers a critical review from classical to new perspectives of advanced oxidation processes (AOPs) coupled to two- and multi-way calibration strategies based on multivariate curve resolution – alternating least-squares (MCR-ALS) and parallel factory analysis (PARAFAC) with various analytical techniques to monitor the degradation of contaminants in environmental samples. It focuses on the generation of highly reactive hydroxyl (HO•) radicals (classical AOPs with emphasis on Fenton, photo-Fenton and ozonation processes) and emerging reactive sulphate (SO4•−) radicals (new perspectives of AOPs) for effective degradation of recalcitrant compounds. Other new perspectives of AOPs were also addressed, namely semiconductor photocatalysis (TiO2/UV), combination of processes involving at least one AOP (hybrid or single-step processes and sequential or two-step processes), novel advanced electrochemical oxidation technologies (electro-Fenton and electro-photo-Fenton) and nanocatalytic heterogeneous Fenton technology with high specific surface area. Literature reports since 2008 for real applications in the environmental remediation based on AOPs (from classical to new perspectives) coupled to PARAFAC and MCR-ALS with first-, second- and third-order data were reviewed and the improvements obtained were briefly discussed. The two- and multi-way calibration strategies allow one the successful decomposition of first-, second- and third-order data collected from different analytical techniques. Therefore, the respective profiles obtained allowed qualitative (spectral profiles) and quantitative (concentration profiles) analysis of complex samples during the degradation of contaminants through the second-order advantage. Finally, trends of future research directions for AOPs coupled to various analytical techniques and advanced chemometric models were provided.  相似文献   

13.
《中国化学》2017,35(9):1431-1436
Enhancement of Fe3O4 /Au nanoparticles (Fe3O4 /Au NPs ) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4 /Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst‐activated decomposition of H2O2 to •OH radical, which was one of the strong oxidizing species. Besides, Fe3O4 /Au nanoparticles have exhibited satisfying recycle performance for potential industrial application.  相似文献   

14.
通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B(RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe...  相似文献   

15.
通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4 S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-VisDRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B (RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4 S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe3+的加入促进了光生电荷的分离和H2O2的活化,超氧阴离子自由基(·O2-)、空穴和羟基是光-自芬顿催化过程中的主要活性物种,且·O2-作用更大。  相似文献   

16.
《中国化学快报》2023,34(3):107503
The Z-scheme heterostructure for photocatalyst can effectively prolong the lifetime of photogenerated carriers and retain a higher conduction/valence band position, promoting the synergistic coupling of photocatalysis and peroxymonosulfate (PMS) activation. In order to fully utilize the luminous energy and realize the efficient activation of PMS, this work achieved successful construction of NiCo2O4/BiOCl/Bi24O31Br10 ternary Z-scheme heterojunction by simultaneously synthesizing BiOCl and NiCo2O4 with NiCl2 and CoCl2 as the precursors. The intercalated BiOCl could serve as a carrier migration ladder to further achieve the spatial separation of electron-hole pairs, so that the oxidation and reduction processes separately occurred in different regions. Compared with the reported catalysts, the as-prepared composites exhibited the enhanced removal efficiency for tetracycline hydrochloride (TCH) in the visible light/PMS system, with a degradation efficiency of 85.30% in 2 min, and possessed good stability. Z-scheme heterojunction was shown to be beneficial for maximizing the superiority of photo-assisted Fenton-like reaction system. The experimental and characterization results confirmed that both non-radicals (1O2) and radicals (SO5?? and SO4??) were involved in the reaction process and the SO5?? generated by the oxidation of PMS played a crucial role in the TCH degradation. The possible reaction mechanism was finally proposed. This study provided new insight into the Z-scheme heterostructure to promote the photo-assisted Fenton-like reaction.  相似文献   

17.
Active pharmaceutical intermediates (API) in waste waters have adverse effects on aquatic life and environment. The API have high COD value and low BOD3 and hence difficult to treat biologically. In this study, advanced oxidation processes (AOPs) utilizing the H2O2/Fe+2, Fenton reactions were investigated in lab-scale experiments for the degradation of Atenolol containing waste water streams. The experimental results showed that the Fenton process using H2O2/Fe+2 was the most effective treatment process. With Fenton processes, COD reduction of wastewater can be achieved successfully. It is suggested that Fenton processes are viable techniques for the degradation of Atenolol from the waste water stream with relatively low toxic by-products in the effluent which can be easily biodegraded in the activated sludge process. Hence, the Fenton process with H2O2/Fe+2 is considered a suitable pretreatment method to degrade the active pharmaceutical molecules and to improve the biodegradability of waste water.  相似文献   

18.
Carbon dots (Cdots) has been proved to possess the catalytic decomposition of H2O2 in the photocatalytic system. It is a potential photo-Fenton catalyst. Since multiple emissive Cdots have different light response range. There is rarely investigation on the performance of Cdots based photo-Fenton on the light wavelength. Herein, blue, green and red emissive carbon dots were synthesized from the different ratio of o-phenylenediamine and catechol by the solvothermal method. They exhibit different light adsorption range from UV to visible light. Furthermore, the photo-Fenton reactivity of Cdots was studied for catalyzing the decomposition of H2O2 to generate free hydroxyl radicals and consequently applying for the removal of methyl blue. The results exhibit that Cdots with the broader light adsorption rang possess the stronger catalytic activity for the photo-Fenton reaction. The H2O2 decomposition rate of red emissive Cdots is 0.074 min?1, which is 2.64 and 1.46 times than the blue and green emissive Cdots, respectively. And the radical detection results confirm that the photo-Fenton happens in the reaction. In addition, the Cdots photo-Fenton can be carried out in the broad pH range from acidic to basic solution, which has a great potential to treat wastewater in the neutral system.  相似文献   

19.
A yolk–shell-structured sphere composed of a superparamagnetic Fe3O4 core and a carbon shell (Fe3O4@HCS) was etched from Fe3O4@SiO2@carbon by NaOH, which was synthesized through the layer-by-layer coating of Fe3O4. This yolk–shell composite has a shell thickness of ca. 27 nm and a high specific surface area of 213.2 m2 g?1. Its performance for the magnetic removal of tetracycline hydrochloride from water was systematically examined. A high equilibrium adsorption capacity of ca. 49.0 mg g?1 was determined. Moreover, the adsorbent can be regenerated within 10 min through a photo-Fenton reaction. A stable adsorption capacity of 44.3 mg g?1 with a fluctuation <10% is preserved after 5 consecutive adsorption–degradation cycles, demonstrating its promising application potential in the decontamination of sewage water polluted by antibiotics.  相似文献   

20.
通过原位共沉淀法可控制备了系列直接Z型MIL-100(Fe)/BiOBr异质结。使用粉末X射线衍射(PXRD)、傅里叶红外变换(FTIR)光谱、紫外可见漫反射光谱(UV-Vis DRS)、扫描电镜(SEM)、高倍透射电镜(HRTEM)以及 X 射线光电子能谱(XPS)对MIL-100(Fe)/BiOBr 异质结晶体结构、微观形貌、光学性能、化学组成进行表征。以低功率发光二级管可见光为光源,探究了MIL-100(Fe)/BiOBr异质结光芬顿降解磺胺甲恶唑(SMX)性能。最佳反应体系MB-7/Vis/H2O2(MB-7是MIL-100(Fe)质量为BiOBr质量的10%时制备的样品)在光源照射70 min后可降解99.8% SMX(5 mg·L-1)。同时,还考察了H2O2浓度、催化剂投加量、pH值以及无机阴离子对 MB-7/Vis/H2O2降解 SMX 影响。MB-7/Vis/H2O2能够在经过 5轮循环降解实验后保持 95% 以上的 SMX 降解效率,表明其具有较好的循环稳定性。通过光致发光(PL)光谱、光电化学测试、活性物质捕获实验以及电子自旋共振(ESR)技术对光芬顿降解SMX机理进行了揭示。增强的光芬顿活性的机制主要来自于异质结的构建加速了光生载流子的分离,进而促进了活性物质产生以及Fe3+/Fe2+的循环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号