首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We report a simple method for the functionalization of multi-walled carbon nanotubes (MWNTs) with a biomedically important polymer, poly(2-hydroxyethyl methacrylate) (poly(HEMA)), by chemical grafting of HEMA monomer followed by free radical polymerization. The nanotubes were first oxidized with a mixture of conc. nitric acid and sulfuric acid (1:3), in order to obtain carboxylic acid functionalized MWNTs. Then the grafting of HEMA on to the surface of MWNTs was carried by chemical functionalization of HEMA with acid chloride-bound nanotubes by esterification reaction. FT-IR was used to identify functionalization of -COOH and HEMA groups attached to the surface of the nanotubes. The presence of poly(HEMA) on the nanotubes were confirmed by FESEM, TEM, and TGA analyses. Additionally, the dispersibility of the polymer functionalized nanotubes in methanol was also demonstrated. Considering the biomedical importance of poly(HEMA) and the recent successful in vivo studies on CNTs, in future, these materials are expected to be useful in the pharmaceutical industry as novel biomaterials composites with potential applications in drug delivery.  相似文献   

2.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   

3.
Control of the functional group distribution is of fundamental importance in the design of functional polymer particles, particularly in biological applications. Surface-functionalized particles are useful for bioconjugation and medical diagnostics, while internally functionalized particles may have applications in drug delivery. We have prepared a series oftemperature-sensitive poly(N-isopropylacrylamide) (PNIPAM)-based microgels containing carboxylic acid functional groups via copolymerization with methacrylic acid and acrylamide, which was selectively hydrolyzed under optimized conditions to generate the carboxylic acid functionality. The resulting microgels were analyzed using conductometric and potentiometric titration, dynamic light scattering, and electrophoresis. Acrylamide-containing microgels hydrolyzed below the volume phase transition temperature (VPTT) show broad particle size versus temperature profiles, relatively low electrophoretic mobilities at basic pH, and time-dependent base titration profiles, suggesting the presence of internal functional groups whose titration is diffusion-controlled. Methacrylic acid containing microgels show sharper particle size versus temperature profiles, higher electrophoretic mobilities at basic pH, and time-independent base titration profiles, suggesting the presence of a "core-shell" structure with primarily surface functionalization. Similar results were obtained when acrylamide-containing microgels were hydrolyzed at temperatures above the VPTT. Thus, through selection of comonomer and hydrolysis conditions, we have developed strategies to control and characterize the number and distribution ofcarboxylic acid functional groups in PNIPAM-based microgels.  相似文献   

4.
The synthesis of a drug delivery platform based on graphene was achieved through a step‐by‐step strategy of selective amine deprotection and functionalization. The multifunctional graphene platform, functionalized with indocyanine green, folic acid, and doxorubicin showed an enhanced anticancer activity. The remarkable targeting capacity for cancer cells in combination with the synergistic effect of drug release and photothermal properties prove the great advantage of a combined chemo‐ and phototherapy based on graphene against cancer, opening the doors to future therapeutic applications of this type of material.  相似文献   

5.
Vesicles assembled from amphiphilic block copolymers represent promising nanomaterials for applications that include drug delivery and surface functionalization. One essential requirement to guide such polymersomes to a desired site in vivo is conjugation of active, targeting ligands to the surface of preformed self-assemblies. Such conjugation chemistry must fulfill criteria of efficiency and selectivity, stability of the resulting bond, and biocompatibility. We have here developed a new system that achieves these criteria by simple conjugation of 4-formylbenzoate (4FB) functionalized polymersomes with 6-hydrazinonicotinate acetone hydrazone (HyNic) functionalized antibodies in aqueous buffer. The number of available amino groups on the surface of polymersomes composed of poly(dimethylsiloxane)-block-poly(2-methyloxazoline) diblock copolymers was investigated by reacting hydrophilic succinimidyl-activated fluorescent dye with polymersomes and evaluating the resulting emission intensity. To prove attachment of biomolecules to polymersomes, HyNic functionalized enhanced yellow fluorescent protein (eYFP) was attached to 4FB functionalized polymersomes, resulting in an average number of 5 eYFP molecules per polymersome. Two different polymersome-antibody conjugates were produced using either antibiotin IgG or trastuzumab. They showed specific targeting toward biotin-patterned surfaces and breast cancer cells. Overall, the polymersome-ligand platform appears promising for therapeutic and diagnostic use.  相似文献   

6.
采用芳香取代的咪唑二羧酸配体2-(对氰基)苯基-4,5-咪唑二羧酸(p-CNPhH3IDC) ,在含氮螯合配体 2,2'-联吡啶(2,2'-bipy)的存在下,利用水热反应,制备了一个具有混合配体的一维链状配位聚合物:[Cd(p-CNPhHIDC)(2,2'-bipy)]n(1)。 通过元素分析、傅里叶变换红外光谱仪以及单晶X射线衍射等技术手段研究了配位聚合物1的结构和性能。 结果表明,该配位聚合物稳定性较好,在231.6 ℃前结构稳定。 经乙睛、甲醇、乙醛等溶剂浸泡后,配位聚合物1的荧光强度发生了一定程度的减弱(乙醛和CH2Cl2)或增强(DMF、硝基苯、丙酮),仅有吡啶溶剂使其荧光发射波长发生了60 nm的蓝移,显示其对吡啶有比较好的识别作用。  相似文献   

7.
Glucosamine-carrying temperature- and pH-sensitive microgels with an average diameter of about 100 nm were successfully prepared by free radical precipitation polymerization. The thermo- and pH-responsive properties of the microgels were designed by the incorporation of N-isopropylacrylamide (NIPAM) and acrylic acid (AAc) to copolymerize with acrylamido-2-deoxyglucose (AADG). The stimuli sensitivity of the microgels was studied by the measurement of their sizes and volume phase transition temperature (VPTT) under different surrounding conditions. The results showed that the microgels were responsive to temperature, pH, and ionic strength, and could have a desired VPTT by modifying AADG and AAc contents. The effect of temperature and pH on insulin release from the microgels was also investigated. The release of drug at the tumor-surrounding environment is faster than that under normal physiological conditions. A preliminary in vitro cell study showed that the glucosamine-carrying microgels are more biocompatible to mouse fibroblast cells, compared to the microgels without glucosamine. These glucosamine-carrying dual-sensitive microgels may be promising carriers for targeted drug delivery to tumors.  相似文献   

8.
A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on' and ‘‘off'reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery.  相似文献   

9.
We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.  相似文献   

10.
聚丙烯酸功能化多壁碳纳米管   总被引:1,自引:0,他引:1  
Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.  相似文献   

11.
In this research, a series of pH-responsive microgels based on acrylamide (AM), acrylic acid (AA) as the main monomers, and N,N′-methylenebisacrylamide as a divinyl cross-linking agent, have been prepared by inverse microemulsion polymerization. The effect of chemical composition of poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) on hydrodynamic diameters, morphology, swelling ratios and pH-responsive behaviour and thermal properties of microgels were discussed. With an increase of the mole percentages of AA in the feed ratio, the microgels have higher swelling ratios. The TEM photographs show that the spherical morphology of the microgels are regular relatively. Comparing with PAM microgels, number-average diameters of P(AM-co-AA) microgels were larger because of the presence of AA chain segment in the polymer chain. Turbidities of microgels determined through UV–vis spectrophotometer indicate that the microgels exhibit favourable pH-responsive behaviour, and responsive pH value is related to the dissociation constant of AA. Moreover, thermal stable properties of microgels were confirmed by differential scanning calorimeter. It was observed that an increase in the mole percentages of AA in the feed ratio provided lower glass transition temperature and thermal decomposition temperature of pH-responsive microgels.  相似文献   

12.
Spherical particles of 50-100 mum size composed of poly(acrylic acid) networks covalently bonded to Pluronic polyether copolymers were tested for swelling in aqueous media. The microgels were cross-linked either by permanent ethylene glycol dimethacrylate (EGDMA) cross-links alone or by EDGMA together with reversible disulfide or biodegradable azoaromatic cross-links. Optimum conditions for a rapid, diffusion-limited swelling of the pH- and temperature-sensitive microgels with nondegradable cross-links were found. The microgels cross-linked by disulfide groups and equilibrium-swollen in the buffer solution exhibited degradation-limited kinetics of swelling under physiological conditions, with a first-order reaction constant, k(1), linearly proportional to the concentration of reducing agents such as dithiotreitol and tris(2-carboxyethyl)phosphine (TCEP). A severalfold faster swelling in the presence of more powerful reducing agent, TCEP, was observed, indicating the chemical specificity of the microgel swelling. The reoxidation of the thiol groups into disulfide cross-links by sodium hypochlorite led to the restoration of the microgels' diameter measured prior to the reduction-reoxidation cycle, which confirms the shape memory of the microgels. Enzymatically degradable azoaromatic cross-links enabled slow microgel swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. The low rate of swelling of the Pluronic-containing microgels can enable sustained drug release in colon-specific drug delivery.  相似文献   

13.
This work presents a very new look at folate targeting and is focused on synthesizing and assessing the biological activity of folic acid‐targeted drug delivery materials based on β‐cyclodextrin. Both folic acid and β‐cyclodextrin have been covalently conjugated to branched polyethylenimine as the polymeric vector. Host–guest inclusion of folic acid into a β‐cyclodextrin cavity, demonstrated by means of the spectroscopic methods (2‐D NMR, IR, UV–Vis), is found to be of crucial importance for biological activity of nanotherapeutics. This paper describes the very first example of the versatile synthetic approach to create the polymeric biosystems, where folic acid activity is not limited by the inclusion phenomenon. Cytotoxicity of the obtained polymeric materials against Lewis lung carcinoma cells is determined by neutral red uptake assay. Folate receptor‐binding studies reveal that the developed synthetic approach enables full exploitation of the potential of folic acid as a targeting ligand.  相似文献   

14.
We report on the synthesis of various glucose-responsive microgels based on N-alkylacrylamide derivatives and phenylboronic acid (PBA) as a glucose sensing moiety. Depending on their chemical composition, the microgels exhibit opposite behaviors in response to glucose concentration increase: they can either swell or shrink, using two different mechanisms for glucose recognition. Both behaviors may be suitable for glucose sensing and insulin delivery. When glucose binds a single boronate receptor, the microgel swells as glucose concentration increases. This mechanism can be used to deliver a drug by diffusion through the network. In other cases, glucose binds specifically to two boronates, which creates additional cross-links within the network and provokes shrinkage. Such systems are promising for the development of sensors with improved selectivity and also as potential "intelligent" valves in microfabricated delivery systems. By a rational choice of the constituting units of the network structure, we show how to favor one or the other type of response to glucose variation. Therefore, glucose-swelling microgels operating under physiological conditions have been obtained by copolymerization with an appropriate choice of alkylacrylamide monomer and boronate derivative. At a pH above the pK(a) of the boronic acid derivative, the same structures shrink in response to glucose concentration. The nature of the cross-linker is a key parameter to enable this dual behavior. In other microgels, an amine group is introduced in the vicinity of the boronic acid, which lowers its pK(a) and favors microgel contraction at physiological pH. This work has allowed us to give some general rules to control the swelling/shrinking behavior of glucose-responsive microgels.  相似文献   

15.
In the few last years, nanosystems have emerged as a potential therapeutic approach to improve the efficacy and selectivity of many drugs. Cyclodextrins (CyDs) and their nanoparticles have been widely investigated as drug delivery systems. The covalent functionalization of CyD polymer nanoparticles with targeting molecules can improve the therapeutic potential of this family of nanosystems. In this study, we investigated cross-linked γ- and β-cyclodextrin polymers as carriers for doxorubicin (ox) and oxaliplatin (Oxa). We also functionalized γ-CyD polymer bearing COOH functionalities with arginine-glycine-aspartic or arginine moieties for targeting the integrin receptors of cancer cells. We tested the Dox and Oxa anti-proliferative activity in the presence of the precursor polymer with COOH functionalities and its derivatives in A549 (lung, carcinoma) and HepG2 (liver, carcinoma) cell lines. We found that CyD polymers can significantly improve the antiproliferative activity of Dox in HepG2 cell lines only, whereas the cytotoxic activity of Oxa resulted as enhanced in both cell lines. The peptide or amino acid functionalized CyD polymers, loaded with Dox, did not show any additional effect compared to the precursor polymer. Finally, studies of Dox uptake showed that the higher antiproliferative activity of complexes correlates with the higher accumulation of Dox inside the cells. The results show that CyD polymers could be used as carriers for repositioning classical anticancer drugs such as Dox or Oxa to increase their antitumor activity.  相似文献   

16.
Charged poly(N-isopropylacrylamide-co-methacrylic acid) [P(NiPAM-co-MAA)] microgels can stabilize thermo- and pH-sensitive emulsions. By placing charged units at different locations in the microgels and comparing the emulsion properties, we demonstrate that their behaviors as emulsion stabilizers are very different from molecular surfactants and rigid Pickering stabilizers. The results show that the stabilization of the emulsions is independent of electrostatic repulsion although the presence and location of charges are relevant. Apparently, the charges facilitate emulsion stabilization via the extent of swelling and deformability of the microgels. The stabilization of these emulsions is linked to the swelling and structure of the microgels at the oil-water interface, which depends not only on the presence of charged moieties and on solvent polarity but also on the microgel (core-shell) morphology. Therefore, the internal soft and porous structure of microgels is important, and these features make microgel-stabilized emulsions characteristically different from classical, rigid-particle-stabilized Pickering emulsions, the stability of which depends on the surface properties of the particles.  相似文献   

17.
Photothermally driven volume transitions in polymer microgels have promising applications for site-specific drug delivery and photodynamic therapy. We studied the temperature-induced volume phase transitions for a series of thermoresponsive microgels of various compositions to find a system with a sharp transition in the physiologically relevant range spanning 38-41 degrees C in 0.01 M phosphate-buffered saline solution (pH = 7.4). We found that the poly(N-isopropylacrylamide-maleic acid) microgels showed an 8-fold decrease in size under the aforementioned conditions. These microgels were loaded with gold nanorods designed to absorb in the near-IR spectral range. Following irradiation at lambda = 809 nm, the microgels underwent a large, reversible, photothermally triggered change in volume. We believe that this microgel system is a promising candidate for photothermally controlled drug release.  相似文献   

18.
The selectivity of antimicrobial photodynamic therapy (PDT) can be enhanced by coupling the photosensitizer (PS) to a targeting ligand. Nanoplatforms provide a medium for designing delivery vehicles that incorporate both functional attributes. We report here the photodynamic inactivation of a pathogenic bacterium, Staphylococcus aureus, using targeted nanoplatforms conjugated to a photosensitizer (PS). Both electrostatic and complementary biological interactions were used to mediate targeting. Genetic constructs of a protein cage architecture allowed site-specific chemical functionalization with the PS and facilitated dual functionalization with the PS and the targeting ligand. These results demonstrate that protein cage architectures can serve as versatile templates for engineering nanoplatforms for targeted antimicrobial PDT.  相似文献   

19.
This study reports a simple and versatile synthesis route for the preparation of highly uniform and densely functionalized aqueous microgels by modification of latex particles composed of an active ester monomer (pentafluorophenyl acrylate; PFPA). The hydrophobic nature of the PFPA allows synthesizing very uniform latex particles via emulsion polymerization, whose size can be controlled by the surfactant concentration, while the degree of crosslinking is a function of the added crosslinker. The high reactivity of the PFPA groups toward nucleophilic substitution delivers a platform method to synthesize functional microgels by reaction with functional amines. This study demonstrates this process for the dense functionalization of the entire particle with an amine carrying a pH‐responsive unit. This study further describes the influence of the crosslinking degree on the ability for swelling of the resulting microgels in aqueous dispersion.

  相似文献   


20.
We observed novel nanoscale surface structures of segregated pinned micelles and craterlike micelles formed by grafted Y-shaped molecules and their reversible reorganization in selective solvents. The Y-shaped molecules have two incompatible polymer chains (polystyrene and poly(tert-butyl acrylate)) attached to a functional stemlike segment capable of covalent grafting to a functionalized silicon surface. Postgrafting hydrolysis of poly(tert-butyl acrylate) arms imparts amphiphilicity to the brush. We demonstrated that spatial constraints induced by a chemical junction of two relatively short (6-10 nm) dissimilar arms in such Y-shaped molecules lead to the formation of segregated micellar surface nanostructures in the grafted layer. We proposed a model of these segregated pinned micelles and the corresponding reverse micelles (craterlike structures) featuring different segregation states of hydrophobic polystyrene and hydrophilic poly(acrylic acid) arms. The arms undergo conformational rearrangements in selective solvents in a controlled and reversible fashion. These nanoscale structural reorganizations define adaptive macroscopic wetting surface properties of the amphiphilic Y-shaped brushes. This surface structure and switchable behavior can be considered as a promising way toward the patterning of solid substrates with adaptive nanowells, which could be used for trapping of adsorbing nanoscale objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号