首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triblock rigid-flexible dendritic block molecules consisting of a rigid aromatic segment as a stem segment, carbohydrate-branched dendrons as a flexible head, and a hydrophobic alkyl chain were synthesized and characterized. The carbohydrate conjugate molecule based on a methyl group as a hydrophobic tail, in the solid state, self-assembles into a 1D nanostructure, whereas the molecule based on a longer hydrophobic tail self-assembles into 2D nanosheets, as confirmed by X-ray scatterings. In aqueous solution, however, both molecules were observed to self-assemble into carbohydrate-coated cylindrical aggregates with a uniform diameter, as confirmed by dynamic light scatterings and transmission electron microscopic (TEM) investigations. Notably, these cylindrical objects reversibly transformed into spherical objects on addition of guest molecules. Investigation of the interactions of the carbohydrate-coated nanostructures with E. coli cells showed that both nano-objects could immobilize bacterial cells, while the degrees of immobilization were significantly dependent on the shape of nanostructure. These results demonstrated that the supramolecular materials that are responsive to external stimuli can provide novel opportunities to control many biological activities.  相似文献   

2.
A series of rod-coil molecules (n-x, where n represents the number of repeating units in a PPO coil and x the number of phenyl groups in a rod segment) with variation in the molecular length, but an identical rod to coil volume ratio was synthesized, and their self-assembling behavior was investigated by using DSC and X-ray scatterings. The molecule with a short rod-coil molecule (16-4) shows a 3-D tetragonal structure based on a body-centered symmetry of the discrete bundles in addition to a lamellar structure. This 3-D lattice, on heating, collapses to generate a disordered micellar structure. Remarkably, the molecules based on longer molecular length (21-5 and 24-6) were observed to self-organize into, on heating, lamellar, tetagonally perforated lamellar, 2-D hexagonal columnar and finally disordered micellar structures. Further increase in the molecular length as in the case of 29-7 and 32-8 induces a 3-D hexagonally perforated lamellar structure as an intermediate structure between the lamellar and tetragonally perforated lamellar structures. Consequently, these systems demonstrate the ability to regulate the domain nanostructure, from 2-dimensionally continuous layers, long strips to discrete bundles via periodic perforated layers by small changes in the molecular length, at an identical rod-to-coil volume fraction.  相似文献   

3.
Chiral-bridged rod molecules (CBRs) that consisted of bis(penta-p-phenylene) conjugated to an opened or closed chiral bridging group as a rigid segment and oligoether dendrons as flexible segments were synthesized and characterized. In the bulk state, both molecules self-assemble into a hexagonal columnar structure, as confirmed by X-ray scatterings and transmission electron microscopy (TEM) observations. Interestingly, these structures display opposite Cotton effects in the chromophore of the aromatic unit in spite of the same chirality (R,R) of the chiral bridging groups. The molecules were observed to self-assemble into cylindrical micellar aggregates in aqueous solution, as confirmed by light scattering and TEM investigations, and exhibit intense signals in the circular dichroism (CD) spectra, which are indicative of one-handed helical conformations. The CD spectra of each molecule showed opposite signals to each other, which were similar to those in the bulk. Notably, when the opened CBR was added to a solution of closed CBRs up to a certain concentration, the CD signal of the closed CBR was amplified. This implies that both molecules co-assemble into a one-handed helical structure because the opened chiral bridge is conformationally flexible, which is inverted to co-assemble with the closed CBR. These results demonstrate that small structural modifications of the chiral moiety can transfer the chiral information to a supramolecular assembly in the opposite way.  相似文献   

4.
Bent-shaped rigid-core molecules with flexible chiral dendrons grafted to the outer side of the bend were synthesized and characterized by circular dichroism, differential scanning calorimetry, X-ray scatterings, and transmission electron microscopy in solution and the solid state. The bent aromatic rods based on hepta- and nonaphenylene with nitrile groups at both ends self-assemble into well-ordered hollow tubular structures in aqueous solution, while the bent rod based on heptaphenylene without nitrile groups showed no apparent aggregations in aqueous solution. In the solid state, the rigid-flexible molecules based on heptaphenylene rod without the nitrile group self-assemble into a 2D oblique columnar structure with the columnar cross-section containing two interlocked molecules. Remarkably, the rigid flexible molecules based on hepta-, nona-, and undecaphenylene with nitrile groups self-assemble into a hexagonal columnar structure with weak 3D order. A model of vesicular channel structure is proposed based on small- and wide-angle X-ray diffraction on oriented fibers, density measurement, reconstruction and simulation of electron density maps, and molecular dynamics simulation. In contrast to the hollow tubular structure found in solution, in the solid both the outside and the interior of the columns are filled by the pendant aliphatic coils. Filling of the interior of these vesicular channels is made possible by some bent rod molecules turning their obtuse apex inward. One in 7, 2 in 8, and 4 in 10 molecules are thus inverted in a column slice in compounds with hepta-, nona-, and undecaphenylene cores, respectively. These are new examples of vesicular double-segregated columnar structures recently discovered in some dendrons.  相似文献   

5.
We have synthesized an amphiphilic dumbbell-shaped molecule consisting of dodeca-p-phenylene and aliphatic polyether dendrons as flexible end groups. The molecular dumbbell in aqueous solution self-assembles into well-defined left-handed helical cylinders with a diameter (8 nm) of a molecular length scale and a pitch length of 5.6 nm, as confirmed by TEM. These elementary helical fibrils are further assembled to give left-handed superhelical fibers with lengths up to several micrometers. Such a well-defined helical arrangement of conjugated rod building blocks may provide a new strategy for the design of one-dimensional nanostructured materials with biomimetic, electronic, and photonic functions.  相似文献   

6.
Protoporphyrin IX species bearing highly branched alkyl chains were self-assembled into well-defined nanostructures such as rod-like in CHCl3–cylcohexane (1:9, v/v) and a honeycomb-like morphology in a polar solvent dimethyl sulfoxide (DMSO). The rod-like morphologies observed in the atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that the lamellar phase self-organises into multilamellar vesicles. The X-ray diffraction (XRD) results indicate molecular arrangements resulting from longitudinal and transverse stacking of the porphyrin head groups in the lamellar structure. The typical nanostructures were derived from a high level of cooperativity between the porphyrin cores via π–σ interactions and supported by hydrogen bonding and van der Waals interactions. The nanostructures were characterised by means of UV–vis, fluorescence, AFM, TEM and XRD analysis. Our methodology confirms the potential of protoporphyrin IX derivatives in supramolecular chemistry.  相似文献   

7.
We have synthesized an amphiphilic rigid-flexible macrocycle (fcoil = 0.68) consisting of hexa-p-phenylene and aliphatic polyether chain. The macrocyclic molecule in bulk state self-organizes into a 2-D body-centered rectangular structure (a = 4.3 nm and b = 6.3 nm). In aqueous solution, the macrocycle self-assembles into well-defined ribbonlike aggregates with a rod tilt relative to the ribbon normal at the initial stage. These elementary fibrils are further coiled to form a tubular structure consisting of coiled ribbons with a uniform diameter of about 20 nm and a regular pitch of 4.7 nm, as confirmed by TEM experiments. The internal diameter and the wall thickness of the nanotube are measured to be 14 and 3 nm, respectively.  相似文献   

8.
The temperature-dependent self-assembly and the mixing behavior of symmetrical single-chain bolaamphiphiles with different polymethylene chain lengths and different headgroup structures were investigated in water by differential scanning calorimetry (DSC), cryo transmission electron microscopy (cryo-TEM), and small angle neutron scattering (SANS). The even-numbered polymethylene-1,omega-bis(phosphocholines) (PC-C n-PC) are known to form nanofibers composed of stretched molecules with an all- trans alkyl chain conformation (Drescher, S.; Meister, A.; Blume, A.; Karlsson, G.; Almgren, M.; Dobner, B. Chem.Eur. J. 2007, 13, 5300-5307). The odd-numbered analogues were synthesized to study a possible even-odd effect of these bolaamphiphiles during their aggregation in water. In addition to these bolaamphiphiles with phosphocholine headgroups, a new series of polymethylene-1,omega-bis(phosphodimethylethanolamines) (Me2PE-Cn-Me2PE) with smaller headgroup sizes was synthesized. These bolaamphiphiles show an additional fiber-fiber transition when the alkyl chain length exceeds 26 carbon atoms. The mixing behavior of both types of bolaamphiphiles indicates that differences in the alkyl chain length up to six carbon atoms are tolerated within the fiber structure. The mixing of two Me2PE-Cn-Me2PE or PC-Cn-PC type bolaamphiphiles with different alkyl chain lengths offers the possibility to adjust the temperature, where the cross-linking of the fibers is disrupted and where the fibers break apart. As a consequence, temperature switchable hydrogels are obtained that can be fine-tuned for drug delivery applications. The comparison with dotriacontane-1,32-diyl-bis[2-(methylammonio)-ethylphosphate] (MePE-C32-MePE), a new bolaamphiphile with even smaller phosphomonomethylammonio headgroups, illustrates the importance of the headgroup size for the aggregation behavior. This bolaamphiphile self-assembles exclusively into lamellar structures, and this aggregate type persists in mixtures with the fiber forming Me2PE-C32-Me2PE.  相似文献   

9.
The lamellar structure of a thermotropic aromatic polyester with flexible spacer has beenstudied by using transmission electron microscopy. It was found that the lamellar structure couldbe observed in the crystalline samples of this semirigid polymer crystallized from different states.The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymersof flexible chain molecules. The molecular chains in the lamellae are oriented in the thicknessdirection as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.  相似文献   

10.
Threefold symmetric rigid‐core molecules with an internally grafted poly(ethylene oxide) (PEO) chain were synthesized, and their self‐assembled structures were characterized using differential scanning calorimetry, TEM, and 1D and 2D X‐ray scatterings in the solid state. The tripod compounds based on short PEO chains (n=8, 13, 17, 21), self‐assemble into 2D channel‐like network structures, whereas the compound with the longest PEO chain (n=34) forms a lamellar liquid crystalline phase. The interiors of the channel structures are filled with flexible PEO chains along the double‐walled aromatic circumference. In these channel‐like networks, three aromatic rods connected in the meta‐position to each other are superimposed in parallel to other adjacent molecules to form the double‐walled aromatic frameworks stacked perpendicular to the resulting channels. These are novel examples of supramolecular channel‐like structures developed using amphiphilic diblock molecules based on a threefold symmetric rigid scaffold.  相似文献   

11.
Nanotubes of a pentacene derivative, 6,13-bis(1-n-dodecyl)-[a,c,l,n]-tetrabenzo-5,6,7,12,13,14-hexaazapentacene, have been prepared by a hierarchical self-assembly mechanism. The oligoazaacenes 1-3, referred to as pyrazinacenes due to their structures of linearly fused pyrazine heterocycles, can also be considered as two azatriphenylenes fused through a reduced pyrazine ring. Dissolution of 6,13-bis(1-n-dodecyl)-[a,c,l,n]-tetrabenzo-5,6,7,12,13,14-hexaaza pentacene in nearly boiling toluene followed by standing of the solution at room temperature yields self-assembled (sa) pyrazinacene (Pa) nanotubes (NT's), or sa-PaNTs. Self-assembled-PaNTs are formed after initial aggregation of the pyrazinacene giving a 130-nm-wide 2-dimensional tape followed by helical twisting of this tape into a hollow cylindrical form of 150-200 nm diameter which can exceed 10 μm in length. The morphologies of the tape and nanotube structures were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and electron absorption spectroscopy (UV/Vis). The latter indicates that the tubes may be formed by chromophore J-aggregation. Also, high resolution TEM of the tubes reveals that they can be composed of several tapes while powder X-ray diffraction revealed the lamellar structure of the tapes composing the tubes.  相似文献   

12.
刘珵  董威红  刘淼  张洋  范楼珍 《化学学报》2009,67(16):1825-1828
利用超声技术, 选择间二甲苯溶液和乙腈两种不互溶的溶剂, 首次成功地制备了C60的空心纳米壳. 选择扫描电镜(SEM), 透射电镜(TEM)等对所制得的C60的空心纳米壳的形貌及结构进行表征. C60空心纳米壳的外直径为300~400 nm, 内直径为200~300 nm, 壁厚约100 nm. X射线衍射光谱(XRD)、傅里叶红外光谱检测结果表明其为C60分子组成的单晶结构. 利用电泳方法制备了均匀的C60的空心纳米壳膜电极, 并利用电沉积方法在所制备的C60的空心纳米壳电极表面沉积了金(Au)纳米颗粒. 为进一步沉积其它金属, 研究其在生物传感器及燃料电池方面的应用提供了基础.  相似文献   

13.
Proteins are macromolecules with characteristic structures and biological functions. It is extremely challenging to obtain protein microtube structures through self-assembly as proteins are very complex and flexible. Here we present a strategy showing how a specific protein, ADP-ribosyl cyclase, helically self-assembles from monomers into hexagonal nanochains and further to highly ordered crystalline microtubes. The structures of protein nanochains and consequently self-assembled superlattice were determined by X-ray crystallography at 4.5 A resolution and imaged by scanning electron microscopy. The protein initially forms into dimers that have a fixed size of 5.6 nm, and then, helically self-assembles into 35.6 nm long hexagonal nanochains. One such nanochain consists of six dimers (12 monomers) that stack in order by a pseudo P6(1) screw axis. Seven nanochains produce a series of large-scale assemblies, nanorods, forming the building blocks for microrods. A proposed aging process of microrods results in the formation of hollow microstructures. Synthesis and characterization of large scale self-assembled protein microtubes may pave a new pathway, capable of not only understanding the self-assembly dynamics of biological materials, but also directing design and fabrication of multifunctional nanobuilding blocks with particular applications in biomedical engineering.  相似文献   

14.
A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.  相似文献   

15.
PAMAM树形分子为模板低温制备纳米硫化锌空心球   总被引:4,自引:0,他引:4  
Hollow ZnS spheres have been prepared in the presence of generation 3.5 poly (amidoamine) dendrimers with surface ester groups (G3.5-COOCH3 PAMAM dendrimer) as synthetic matrix template. The products obtained were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-Vis absorption. TEM studies show that the hollow spheres with diameters ranging from 80 to 100 nm are prepared. The range of wall thickness was estimated to be about 20~30 nm. It was found that the concentration of PAMAM dendrimer had a significant influence on the formation of hollow ZnS spheres. The possible formation mechanism of the hollow spherical structure is also discussed.  相似文献   

16.
The surface properties of Span 80 vesicles at various cholesterol contents, together with those of various liposomes, were characterized by using fluorescence probes. The membrane fluidity of the Span 80 vesicles was measured by 1,6-diphenyl-1.3.5-hexatriene (DPH) and trimethlyammonium-DPH (TMA-DPH), and the results suggested that the surface of the Span 80 vesicles was fluid due to the lateral diffusion of Span 80 molecules. The depolarization measured by TMA-DPH and the headgroup mobility measured by dielectric dispersion analysis indicated the high mobility of the head group of Span 80 vesicles. This suggested that the surface of Span 80 vesicles was flexible due to the head group structure of Span 80, sorbitol. In addition, spectrophotometric analysis with 6-dodecanoyl-N, N-dimethyl-2-naphthylamine and 8-anilino-1-naphthalenesulfonic acid indicated that the water molecules could easily invade into the interior of the Span 80 vesicle membrane, suggesting that the membrane surface was more wet than the liposome surface. These surface properties indicated that the protein could interact with the interior of vesicle membranes, which was similar to the case of cholesterol. Thus the present results confirmed that the Span 80 vesicle surfaces showed the unique characteristics of fluidity, flexibility, and "wetness", whereas the liposome surfaces did not.  相似文献   

17.
Antipodal twisted helical ribbons with lamellar bilayer structure were obtained by self-assembly of chiral amphiphilic molecules in water and water/ethanol. The handedness inversion of the molecular arrangement in these antipodal helical ribbons was investigated by using chiroptical spectroscopy and molecular probes in their antipodal mesoporous silica assemblies synthesized through pairing interaction between the head group of the chiral amphiphilic molecules and a co-structure-directing agent. The supramolecular chirality is imprinted in the pore surface through the organic group of the co-structure-directing agent. The mirror-image diffuse-reflectance circular dichroism spectra of the conjugated discotic probing molecule introduced into their supramolecular chiral imprinted mesoporous silica demonstrated the origin of inverse chirality from the antipodal helical stacking of the molecules.  相似文献   

18.
In this paper, a strategy for hollow porous silica microspheres with ideally flower structure is presented. SiO(2)/PAM hybrid composite microspheres with porous were synthesized by the reaction that the porous polyacrylamide (PAM) micro-gels immersed in tetraethoxysilane (TEOS) anhydrous alcohol solution and water in a moist atmosphere, with ammonium hydroxide as a catalyst. The SiO(2) hollow microspheres with porous were obtained after calcination of the composite microspheres at 550 °C for 4 h. The morphology, composition, and crystalline structure of the microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FI-IR), and X-ray diffraction (XRD), N(2) absorption analysis, respectively. The results indicated that the obtained hollow porous SiO(2) microspheres were a perfect flower structure.  相似文献   

19.
We present a neutron scattering study of oriented samples for the lamellar phase of the ternary mixture sodium decyl sulphate/1-decanol/water. Diffuse scatterings are observed, around the Bragg reflections and away from them, which show that the structure of this lamellar phase deviates from the periodic stacking of infinite homogeneous lamellae of water and amphiphilic molecules usually proposed for the structure of lamellar phases. The nature of this deviation evolves with the soap/decanol ratio, according to the location of the sample in the lamellar domain of the phase diagram. In the middle of the domain the deviation relates to the organization of the lamellar stacking, without apparent modification of the structure of the lamellae of amphiphiles. Moving away from the middle, for higher soap/decanol ratios, the structure of the lamellae appears to be randomly perturbed, eventually by the presence of a few water regions piercing them. When the boundary of the lamellar domain is approached, for still higher soap/decanol ratios, the density of these peturbations increases and they start to be correlated over limited distances, within the lamellae and from lamella to lamella. The local symmetry of these short range correlations is such that these perturbations may be seen as structural fluctuations which may be seen as precursors of the transformation of the lamellar phase into a neighbouring phase on the phase diagram. This phenomenon is discussed briefly in relation to the structural fluctuations of the relative concentrations of sodium decyl sulphate and decanol within the aggregates.  相似文献   

20.
Chlorosomes are light-harvesting complexes of green photosynthetic bacteria. Chlorosomes contain bacteriochlorophyll (BChl) c, d, or e aggregates that exhibit strong excitonic coupling. The short-range order, which is responsible for the coupling, has been proposed to be augmented by pigment arrangement into undulated lamellar structures with spacing between 2 and 3 nm. Treatment of chlorosomes with hexanol reversibly converts the aggregated chlorosome chlorophylls into a form with spectral properties very similar to that of the monomer. Although this transition has been extensively studied, the structural basis remains unclear due to variability in the obtained morphologies. Here we investigated hexanol-induced structural changes in the lamellar organization of BChl c in chlorosomes from Chlorobium tepidum by a combination of X-ray scattering, electron cryomicroscopy, and optical spectroscopy. At a low hexanol/pigment ratio, the lamellae persisted in the presence of hexanol while the short-range order and exciton interactions between chlorin rings were effectively eliminated, producing a monomer-like absorption. The result suggested that hexanol hydroxyls solvated the chlorin rings while the aliphatic tail partitioned into the hydrophobic part of the lamellar structure. This partitioning extended the chlorosome along its long axis. Further increase of the hexanol/pigment ratio produced round pigment-hexanol droplets, which lost all lamellar order. After hexanol removal the spectral properties were restored. In the samples treated under the high hexanol/pigment ratio, lamellae reassembled in small domains after hexanol removal while the shape and long-range order were irreversibly lost. Thus, all the interactions required for establishing the short-range order by self-assembly are provided by BChl c molecules alone. However, the long-range order and overall shape are imposed by an external structure, e.g., the proteinaceous chlorosome baseplate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号