首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The current paper reports the synthesis of a highly hydrophilic, antifouling dendronized poly(3,4,5-tris(2-(2-(2-hydroxylethoxy)ethoxy)ethoxy)benzyl methacrylate) (PolyPEG) brush using surface initiated atom transfer radical polymerization (SI-ATRP) on PDMS substrates. The PDMS substrates were first oxidized in H2SO4/H2O2 solution to transform the Si-CH3 groups on their surfaces into Si-OH groups. Subsequently, a surface initiator for ATRP was immobilized onto the PDMS surface, and PolyPEG was finally grafted onto the PDMS surface via copper-mediated ATRP. Various characterization techniques, including contact angle measurements, attenuated total reflection infrared spectroscopy, and X-ray photoelectron spectroscopy, were used to ascertain the successful grafting of the PolyPEG brush onto the PDMS surface. Furthermore, the wettability and stability of the PDMS-PolyPEG surface were examined by contact angle measurements. Anti-adhesion properties were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the PDMS-PolyPEG surface exhibited durable wettability and stability, as well as significantly anti-adhesion properties, compared with native PDMS surfaces. Additionally, our results present possible uses for the PDMS-PolyPEG surface as adhesion barriers and anti-fouling or functional surfaces in biomedical applications.  相似文献   

2.
The surface of polydimethylsiloxane (PDMS) was modified using a CO2-pulsed laser to evaluate the changes in physical and biological properties of the treated surface. Attachment of anchorage dependent cells, namely baby hamster kidney (BHK) fibroblastic cells, on PDMS surface was investigated in stationary culture conditions. BHK cell adhesion and growth on the PDMS surfaces were studied using scanning electron microscopy (SEM) and optical microscopy. To evaluate the surface wettability, water drop contact angles were determined. The laser treated PDMS surfaces showed high hydrophobicity and low cell adhesion, no spreading and growth in comparison with the unmodified PDMS. It was found that both the wettability and surface structure of the PDMS surface control cell attachment and growth.  相似文献   

3.
The paper reports on the wetting characterization of two surfaces presenting reentrant shapes at micro- and nanoscale using low surface tension liquids (down to 28 mN/m). On the one hand, mushroom-like microstructures are fabricated by molding poly(dimethylsiloxane) (PDMS) onto a patterned sacrificial photoresist bilayer. On the other hand, zinc oxide nanostructures (ZnO NS) are synthesized by easy and fast chemical bath deposition technique. The PDMS and ZnO NS surfaces are then chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane in vapor phase. Both PDMS and ZnO NS surfaces exhibit a large apparent contact angle (>150°) and contact angle hysteresis varying from 50° to a quasi-null value. This large discrepancy can be ascribed to the length scale and topography of the structures, promoting either a vertical imbibition or a lateral spreading within the roughness.  相似文献   

4.
Plasma-induced grafting of polydimethylsiloxane (PDMS) onto the surface of polyurethane (PU) film. The virgin, plasma treated, and PDMS grafted PU films were characterized by means of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, water drop contact angle measurements, and scanning electron microscopy (SEM). The ATR-FTIR spectrogram of the grafted film showed the new characteristic peaks of PDMS. These grafted surfaces exhibited higher hydrophobicity and homogenous morphology. In vitro cell culture study showed that modified surfaces as well as virgin film were compatible with fibroblast cells. The formation of graft polymers combines the biostability of silicone with excellent physical and mechanical properties of PU.  相似文献   

5.
The adsorption properties of a graft copolymer of poly(ethylene glycol) (PEG) with a polycationic backbone, namely, poly( l-lysine)- graft-poly(ethylene glycol) (PLL- g-PEG), onto nonpolar, hydrophobic PDMS surfaces from aqueous solution and the lubrication properties of the self-mated sliding contacts of PDMS surfaces modified with PLL- g-PEG have been investigated. Whereas PLL- g-PEG is spontaneously attracted to negatively charged surfaces as a result of the polycationic PLL backbone, the collective interaction of (CH 2) 4 hydrocarbon moieties on the lysine units in the PLL backbone with nonpolar, hydrophobic surfaces also enables the adsorption of PLL- g-PEG onto hydrophobic surfaces such as PDMS. The adsorption and lubrication properties of PLL- g-PEG have been investigated by varying the aqueous solution parameters, such as pH (2, 7, and 12) and KCl concentration (0, 0.01, 0.1, and 1 M) as well as the length of the PLL backbone of the copolymer (20 vs 375 kDa). In the absence of tribological stress, the adsorption of PLL- g-PEG onto PDMS surfaces was mainly governed by the KCl concentration, whereas the role of pH or the molecular weight of the copolymer was of relatively minor importance; for all pH values, the adsorbed mass decreased with increasing KCl concentration. Under tribological stress, however, a clear dependence of the lubrication properties of PLL- g-PEG on all of the studied parameters, including pH, KCl concentration, and backbone molecular weight, was observed. The adsorption strength of PLL- g-PEG on PDMS surfaces, rather than the adsorbed mass itself, appeared to be the most critical parameter in determining the lubrication properties.  相似文献   

6.
Surfaces of sulfate-terminated polystyrene microspheres are anisotropically modified with silver nanoparticles covering 20-50% of the sphere surface using electroless deposition. A PDMS templating method is employed. Silver nanoparticles are found to deposit uniformly onto the exposed sphere surfaces. The deposition is diffusion-controlled and the nanoparticles adhere strongly to the polystyrene particles despite extensive exposure to ultrasonication. Silver content is confirmed by EDAX analysis. The final silver coverage is controlled via the PDMS pre-curing conditions.  相似文献   

7.
A novel and simple method based on layer-by-layer (LBL) technique has been developed for the modification of the channel in PDMS electrophoresis microchip to create a hydrophilic surface with a stable EOF. The functional surface was obtained by sequentially immobilizing chitosan and deoxyribonucleic acid (DNA) onto the microfluidic channel surface using the LBL assembly technique. Compared to the native PDMS microchips, the contact angle of the chitosan-DNA modified PDMS microchips decreased and the EOF increased. Experimental conditions were optimized in detail. The chitosan-DNA modified PDMS microchips exhibited good reproducibility and long-term stability. Separation of uric acid (UA) and ascorbic acid (AA) performed on the modified PDMS microchip generated 43,450 and 46,790 N/m theoretical plates compared with 4048 and 19,847 N/m with the native PDMS microchip. In addition, this method has been successfully applied to real human urine samples, without SPE, with recoveries of 97-105% for UA and AA.  相似文献   

8.
The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.  相似文献   

9.
The widespread interest in micro total analysis systems has resulted in efforts to develop devices in cheaper polymer materials such as polydimethylsiloxane (PDMS) as an alternative to expensive glass and silicon devices. We describe the oxidation of the PDMS surface to form ionizable groups using a discharge from a Tesla coil and subsequent chemical modification to augment electroosmotic flow (EOF) within the microfluidic devices. The flow performance of oxidized, amine-modified and unmodified PDMS materials has been determined and directly compared to conventional glass devices. Exact PDMS replicas of glass substrates were prepared using a novel two step micromolding protocol. Chemical force microscopy has been utilized to monitor and measure the efficacy of surface modification yielding information about the acid/base properties of the modified and unmodified surfaces. Results with different substrate materials correlates well with expected flow modifications as a result of surface modification. Oxidized PDMS devices were found to support faster EOF (twice that of native PDMS) similar to glass while those derivatized with 3-aminopropyl triethoxysilane (APTES) showed slower flow rates compared to native PDMS substrates as a result of masking surface charge. Results demonstrate that the surface of PDMS microdevices can be manipulated to control EOF characteristics using a facile surface derivatization methodology allowing surfaces to be tailored for specific microfluidic applications and characterized with chemical force microscopy.  相似文献   

10.
Poly(dimethylsiloxane) (PDMS) is an attractive material for microelectrophoretic applications because of its ease of fabrication, low cost, and optical transparency. However, its use remains limited compared to that of glass. A major reason is the difficulty of tailoring the surface properties of PDMS. We demonstrate UV grafting of co-mixed monomers to customize the surface properties of PDMS microfluidic channels in a simple one-step process. By co-mixing a neutral monomer with a charged monomer in different ratios, properties between those of the neutral monomer and those of the charged monomer could be selected. Mixtures of four different neutral monomers and two different charged monomers were grafted onto PDMS surfaces. Functional microchannels were fabricated from PDMS halves grafted with each of the different mixtures. By varying the concentration of the charged monomer, microchannels with electrophoretic mobilities between +4 x 10(-4) cm2/(V s) and -2 x 10(-4) cm2/(V s) were attainable. In addition, both the contact angle of the coated surfaces and the electrophoretic mobility of the coated microchannels were stable over time and upon exposure to air. By carefully selecting mixtures ofmonomers with the appropriate properties, it may be possible to tailor the surface of PDMS for a large number of different applications.  相似文献   

11.
This paper demonstrates the use of surface plasmon resonance to study adsorption (either reversible or irreversible) of detergents on PDMS surfaces in real time. The surface plasmon resonance measurements can directly provide information about the adsorption/desorption processes of detergents on the surface revealing the durability of the adsorbed layer and the anticipated degree of the EOF. Hydroxypropyl methylcellulose very strongly adsorbs onto PDMS and can be considered both a semipermanent layer and stable semipermanent coating. Adsorbed SDS or CTAB layers were stable for several minutes upon rinsing the surface with solution not containing the detergent. It was shown that SDS coated onto PDMS in microchips has the potential to afford similar separations in PDMS as found in conventional fused silica capillaries.  相似文献   

12.
In order to render the surface of polydimethylsiloxane (PDMS) super-hydrophobic without changing its bulk properties, a PDMS film without photosensitizer was exposed to CO2 pulsed laser, at room temperature, as the excitation source. The modified surfaces have been studied by performing scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDXA) and attenuated total reflectance infrared (ATR-IR) spectroscopy. To evaluate the surface property, the water drop contact angle was measured. The dependence of ---Si---O---Si infrared peak intensity, O/Si ratio and water drop contact angle of the treated PDMS as a function of the number of laser pulses were studied. SEM micrographs and water drop contact angle variations show the uniform porosity and super-hydrophobic nature on the surface of PDMS. ATR-FTIR spectra show that the modified PDMS surface contains carbonate groups which enriched the oxygen content of the surface. EDXA analysis shows a higher percentage of oxygen on the surface of the modified PDMS. The hydrophobicity of the samples was found to depend upon the number of laser pulses, but with significant variation between the treated samples. The bulk mechanical properties of PDMS after being laser-treated did not change as shown by dynamic mechanical thermal analysis (DMTA).  相似文献   

13.
We have demonstrated three simple strategies employing poly(dimethylsiloxane) (PDMS) molds for patterning carbon surfaces with two different modifiers in an 18 microm line pattern. The PDMS molds are patterned with microfluidic channels (approximately 22 microm wide and 49 microm deep) and form a reversible, conformal seal to the pyrolyzed photoresist film (PPF) and modified PPF surfaces. Modifiers are electrochemically grafted to the PPF surface by the reduction of aryl diazonium salts and the oxidation of primary amines. For the fill-in patterning approach, the first modifier is electrografted to the PPF surface exposed within the microchannels, and in a second grafting step after removal of the PDMS mold, the second modifier fills in the remaining surface. The selective conversion strategy involves electrografting a continuous film of the modifier to the PPF surface, sealing the PDMS mold to the modified surface and carrying out an irreversible electrochemical reaction of the modifier exposed within the microchannels. In the build-up patterning approach, the PDMS mold is sealed to the modified PPF surface, and a chemical coupling reaction is effected in the microchannels to build up the pattern. The patterns are characterized using SEM, optical microscopy, the formation of condensation figures, and SEM imaging after the assembly of Au nanoparticles.  相似文献   

14.
Chemical force titrations-measurements of the adhesive interaction between a pair of suitably chemically modified atomic force microscopy (AFM) tip and sample surfaces as a function of pH-have been carried out for various combinations of silanol, amine, carboxylic acid, and sulfonic acid functional groups on both tip and sample. The primary surface material studied was poly(dimethylsiloxane) (PDMS). Surface modification was carried out using a plasma oxidation process to form silanol sites; further modification with amine or sulfonic acid sites was carried out by reaction of the silanol sites with the appropriate trialkoxysilane derivative. AFM tips were also modified using trialkoxysilane compounds. In the cases of tip/sample combinations with the same functional group on each, surface pK(1/2) values could be determined. In several "mixed" tip/sample combinations, a peak appeared in the titration curve midway between the surface pK(1/2) values of the tip and sample, consistent with an ionic H-bonding model for the interactions. The amine/sulfonic acid pair showed more complex behavior; the amine-terminated tip/sulfonic acid-terminated PDMS surface force titration curve consisted of two peaks centered at pH 4 and pH 8. Reversing the tip/sample pair resulted in the peak positions being shifted upward by 1.0 pH unit. The peak appearing at lower pH is assigned to electrostatic interactions between the two oppositely charged surfaces, whereas the higher pH peak is believed to arise due to ionic H-bonding interactions. AFM images show the effects on surface patterning of amine- and sulfonic acid-modified PDMS surfaces that have undergone two different oxidation methods (air plasma oxidation and Tesla coil oxidation). The surface morphologies of freshly prepared and 24 h aged air plasma oxidized PDMS are also discussed in this study.  相似文献   

15.
Site-selected and size-controlled iron nanoparticles were prepared on coplanar surfaces via microcontact printing of SAM-modified Au/mica electrodes and controlled-potential electrolytic reactions using ferritin biomolecules. Ferritin molecules packed like a full monolayer on 6-amino-1-hexanethiol (AHT)- and 11-amino-1-undecanethiol (AUT)-modified Au/mica surface via electrostatic interactions, which did not depend on the chain length of the amino terminal alkane thiols. After heat-treatment at 400 degrees C for 60 min, iron oxide nanoparticles (ca. 5 nm in diameter) derived from ferritin cores were observed at the Au/mica surface by atomic force microscopy (AFM). On the study on the electrochemistry of ferritin immobilized onto AHT- and AUT-modified Au/mica electrodes, the redox response of the ferritin immobilized AHT-modified electrode was clearly observed. On the other hand, no redox peak for ferritin was obtained at the AUT-modified electrode. The electron transfer between ferritin and the electrode through the AUT membrane could not take place. The difference in the electrochemical response of ferritin immobilized onto AHT- and AUT-modified Au/mica was caused by the chain length of the amino terminal alkane thiols. Uniform patterns of AHT and AUT on the Au/mica electrode surface were performed by use of a poly(dimethylsiloxane) (PDMS) stamp. After the immobilization of ferritin onto both AHT- and AUT-modified electrode surfaces, the modified electrode was applied to a -0.5 V potential for 30 min in a phosphate buffer solution. After this procedure, the PDMS stamp patterning image appeared by scanning electron microscopy (SEM) image. The SEM results induced by the size change of the ferritin core consisting of iron(III) by electrolysis.  相似文献   

16.
Controlling zeta potential of PDMS surface coated with a layer of PEG is important for electroosmosis and electrophoresis in PDMS made microfluidic chips. Here, zeta potentials of PDMS surfaces modified by simple physisorption of PEG of different concentrations in phosphate buffer solutions, pure water, and PEG solution were reported. Coating PEG on PDMS surfaces was achieved by immersing a PDMS layer into the PEG solution for 10 min and then taking it out and placing it in an oven at 80℃ for 10 h. To avoid damaging the PEG layer on the PDMS surface, an induction current method was employed for zeta potential measurement. Zeta potentials of PEG modified PDMS in electrolyte solutions were measured. The results show that 2.5% PEG can effectively modify PDMS surface with positive zeta potential value in phosphate buffer solutions, pure water and 10% PEG solution. Further increase in PEG solution beyond 5% for surface modification has no obvious effect on zeta potential change.  相似文献   

17.
This paper describes an approach to adhere retinal cells on micropatterned polyelectrolyte multilayer (PEM) lines adsorbed on poly(dimethylsiloxane) (PDMS) surfaces using microfluidic networks. PEMs were patterned on flat, oxidized PDMS surfaces by sequentially flowing polyions through a microchannel network that was placed in contact with the PDMS surface. Polyethyleneimine (PEI) and poly(allylamine hydrochloride) (PAH) were the polyions used as the top layer cellular adhesion material. The microfluidic network was lifted off after the patterning was completed and retinal cells were seeded on the PEM/PDMS surfaces. The traditional practice of using blocking agents to prevent the adhesion of cells on unpatterned areas was avoided by allowing the PDMS surface to return to its uncharged state after the patterning was completed. The adhesion of rat retinal cells on the patterned PEMs was observed 5 h after seeding. Cell viability and morphology on the patterned PEMs were assayed. These materials proved to be nontoxic to the cells used in this study regardless of the number of stacked PEM layers. Phalloidin staining of the cytoskeleton revealed no apparent morphological differences in retinal cells compared with those plated on polystyrene or the larger regions of PEI and PAH; however, cells were relatively more elongated when cultured on the PEM lines. Cell-to-cell communication between cells on adjacent PEM lines was observed as interconnecting tubes containing actin that were a few hundred nanometers in diameter and up to 55 microm in length. This approach provides a simple, fast, and inexpensive method of patterning cells onto micrometer-scale features.  相似文献   

18.
A simple flame treatment method was explored to construct micro/nanostructures on a surface and then fabricate a biomimetic superhydrophobic surface at a relatively low cost. SiO2‐containing polydimethylsiloxane (PDMS) was used as a substrate. The PDMS replicas with various micropatterned surfaces were fabricated using grass leaf, sand paper, and PET sheet with parallel groove geometry as templates via PDMS replica molding. The PDMS replica surfaces with micron structures and the surface of a flat PDMS sheet as a control sample were further treated by flame. The fabricated surfaces were characterized by scanning electron microscopy and water contact angle measurements. The effect of surface microstructures on the transparency of PDMS was also investigated. The studies indicate that the fine nanoscale structures can be produced on the surfaces of PDMS replicas and a flat PDMS sheet by a flame treatment method, and that the hierarchical surface roughness can be adjusted and controlled by varying the flame treatment time. The flame‐treated surfaces of PDMS replicas and a flat PDMS sheet possess superhydrophobicity and an ultra‐low sliding angle reaching a limiting value of 1°, and the anisotropic wettability of the PDMS replica surface with oriented microgroove structures can be greatly suppressed via flame treatment. The visible light transmittance of the flame‐treated flat PDMS surface decreases with prolonged flame treatment times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Superhydrophobic surfaces are gaining considerable interest in a lot of different applications, and nonetheless, precise control over the wettability properties of such surfaces is still a challenge due to difficulties when controlling the effects independently induced on superhydrophobicity by the chemical and topological surface characteristics. We have fabricated engineered superhydrophobic surfaces onto poly(dimethylsiloxane) (PDMS) substrates by means of suitable CF4-plasma treatments. These treatments allowed the modification of both the morphological properties of the PDMS surface, due to a preferential etching of certain components of its macromolecules, and the chemical ones, by the deposition of a fluorinated layer. Chemical effects were separated from topological ones by performing a double replica molding process of the CF4-plasma-treated surfaces. This allowed us to obtain positive copies of the structured surfaces without the overlaying fluorinated coating affecting the surface chemistry. Such replicated surfaces showed a decrease of the contact angle if compared to the treated ones and therefore evidenced chemistry's weight in superhydrophobicity effects. In particular, we found that, for highly dense columnar-like PDMS microstructures, the effect of the plasma-deposited fluorinated layer covering surfaces produces an enhancement of the contact angle of about 20 degrees .  相似文献   

20.
We developed a simple method of reproducibly creating highly aligned DNA nanowires without any surface modifications or special equipment. Stretched DNA molecules initially present on the PDMS sheet were transferred onto another surface using transfer-printing (TP). Fluorescent microscopic and atomic force microscopic images revealed that many DNA molecules were highly aligned on surfaces after TP. Furthermore, it was also possible to realize the two-dimensional assembly of DNA nanowires by repeating TP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号