首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

2.
Two complexes of formulas [Zn(Hfac)2(IM-IMH-Bph)] (I) and [Co(Hfac)3](IM-Bph) (II), where IM-Bph = 2,2′-bis(1′-oxyl-4′,4′,5′,5′-tetramethylimidazoline-2′-yl)-bis(2-formylphenyl) ether; Hfac = hexafluoroacetylacetonate, have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray analysis demonstrates that both I and II are mononuclear complexes. In I, each zinc ion is five-coordinated with four oxygen atoms from two Hfac ligands and one oxygen atom from nitroxide. Complex II contains one Co(III) atom with six oxygen atoms from three Hfac ligands and uncoordinated IM-Bph diradical, in which the Co2+ ion and NIT-Bph biradical can undergo the redox reaction.  相似文献   

3.
Heterometallic complexes [RuNO(NO2)4OHCuPy2(H2O)] (I) and [RuNO(NO2)4OHCuPy3] (II) are described structurally for the first time. In complex I, the ruthenium anion is coordinated to the copper atom by the bridging OH group and two bridging nitro groups; in complex II, by the bridging OH group and one bridging nitro group. Dimers are formed in the crystal lattice of complex II due to the interaction of the copper atom and the nitro group of the ruthenium anion in trans position to the bridging NO2 group.  相似文献   

4.
Two crystalline host-guest complexes are synthesized and studied using X-ray diffraction analysis: (18-crown-6)sodium tribromide [Na(18-crown-6)]+ · Br 3 ? (I) and (18-crown-6)potassium tribromide (with an admixture of bromodiiodide) [K(18-crown-6)]+ · (Br0.25I2.75)? (II). The structures of compound I (space group P21/n, a = 8.957 Å, b = 8.288 Å, c = 14.054 Å, β = 104.80°, Z = 2) and compound II (space group Cc, a = 8.417 Å, b = 15.147 Å, c = 17.445 Å, β = 99.01°, Z = 4) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.098 (I) and 0.036 (II) for all 2311 (I) and 2678 (II) independent measured reflections on a CAD-4 automated diffractometer (λMoK α). Similar crystalline complexes I and II exist as infinite chains of alternating complex cations and trihalide anions linked to each other through weak Na-Br or K-I coordination bonds. In [Na(18-crown-6)]+ and [K(18-crown-6)]+ complex cations, the Na+ or K+ cation (coordination number is eight) is located in the center of the cavity of the 18-crown-6 ligand and coordinated by the six O atoms and two terminal Br or I atoms of two trihalide anions lying on opposite sides of the rms plane of the crown ligand.  相似文献   

5.
Two new coordination polymers, [Pb(IDPT)2(NO3)2] (I) and [Mn(IDPT)(SO4)(H2O)2] (II) (IDPT = imidazo[4,5-f][1,10]phenanthroline), were synthesized by hydrothermal method and characterized by elemental analysis and single-crystal X-ray diffraction technique. The results reveal that the complex I belongs to monoclinic crystal system, space group C2/c and complex II belongs to monoclinic crystal system, P21/c space group. The cell parameters are: a = 19.1970(13), b = 7.3875(5), c = 17.3825(12) Å, β = 100.47(10)°, V = 2424.0(3) Å3, Z = 4, F(000) = 1488 for I; a = 10.9135(6), b = 7.0230(4), c = 19.7034(10) Å, β = 99.32(10)°, V = 1490.25(14) Å3, Z = 4, F(000) = 828 for II. In the structure of complex I, the metal center Pb(II) is six-coordinated, displays an octahedral geometry. Each molecule is further connected with neighboring one via π-π interactions into 1D chain. In complex II, Mn(II) is six-coordinated to form a distorted octahedral geometry. Compound II displays 1D supramolecular chain formed through hydrogen bonds. Additionally, the fluorescent properties for the complexes were investigated. Complexes I and II exhibit strong photoluminescence with emission maximum at 583 and 529 nm at room temperature.  相似文献   

6.
Two new chelating radical ligands, NITphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl-3-oxide) and IMphtrz (4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3-triazole-4-yl)imidazoline-1-oxyl), and their cobalt(II) complexes [Co(Hfac)2(NITphtrz)] (I) and [Co(Hfac)2(IMphtrz)] (II) (Hfac = hexafluoroacetylacetonate) have been prepared and characterized by IR, magnetic, and single-crystal X-ray analysis. The magnetic behaviors of the lignad NITphtrz and complex I have been discussed.  相似文献   

7.
Two mononuclear five-coordinated transition metal complexes FeLCl2 (I) and MnLCl2 (II) containing tridentate 2,6-bis(6-methylquinolin-2-yl)pyridine ligand (L) have been synthesized and characterized by single-crystal X-ray crystallography. In the complexes, the metal center was tridentately chelated by ligand and further coordinated by two chlorine atoms, resulting in distorted trigonal-bipyramidal geometry for complex I and II, respectively. In addition, crystal packing in complex is stabilized by C-H?Cl intermolecular hydrogen bond, which link the mononuclear complex to the 1D chain.  相似文献   

8.
The reaction of [Cd2{S2CN(CH2)6}4] (I) with morpholine gives a crystalline adduct of cadmium N,N-cyclo-hexamethylenedithiocarbamate [Cd{NH(CH2)4O}2{S2CN(CH2)6}2] (II), whose coordination sphere includes two molecules of the donor base. The structural organization and thermal behavior of II is studied by X-ray diffraction analysis and simultaneous thermal analysis in comparison with the original binuclear cadmium complex I. The central cadmium atom (coordination number 6) coordinates two morpholine molecules and two structurally equivalent S,S’-anisobidentate ligands HmDtc to form a chromophore [CdN2S4] with the structure of a distorted octahedron. The thermal destruction of II proceeds in two stages and includes consecutive steps of dissociation of the Cd-N bonds followed by the desorption of morpholine and thermolysis of the dithiocarbamate moiety of the adduct to form CdS as the final product. The structure of binuclear [Cd2{S2CN(CH2)6}4] is refined for a correct refinement of the geometric characteristics of compounds I and II.  相似文献   

9.
Two complexes, namely, triaqua(18-crown-6)strontium dibromide monohydrate (I) and diaquabromo(18-crown-6)barium bromide (II), are synthesized. Their crystal structures are determined by X-ray diffraction analyses. For complex I, space group C2/c, a = 17.547 Å, b = 10.246 Å, c = 14.786 Å, β = 123.08°, Z = 4. For complex II, space group Pnma, a = 17.753 Å, b = 17.465 Å, c = 6.629 Å, Z = 4. The structures are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.056 (I) and 0.042 (II) for 2696 (I) and 2440 (II) independent reflections (CAD-4 automated diffractometer, λMoK α radiation). Both complex cations—randomly disordered [Sr(18C6)(H2O)3]2+ in complex I and [BaBr(18C6)(H2O)2]+ in complex II—are of the host-guest type. The Sr2+ (Ba2+) cation resides in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In the structures complexes I and II, the coordination polyhedra of the Sr2+ and Ba2+ cations (coordination number 9) can be described as distorted hexagonal bipyramids with one apex at the O atom of the water molecule in complex I or at the Br? ligand in complex II and the other split apex at the O atoms of two water molecules.  相似文献   

10.
Thermodynamic data for cesium complexes formation with 18-crown-6 (18C6, L) [Cs(18C6)]+ in N-butyl-4-methyl-pyridinium tetrafluoroborate ([BMPy][BF4], I), in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4], II) and in 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)2], III) were measured with NMR 133Cs technique at 23–50 °C. The stability of cesium complex in RTILs is estimated to be in the range between water and DMFA. Stability constants for [Cs(18C6)]+ are found to decrease as temperature is increasing. The following values for lgK(Cs+L) and ΔH(Cs+L) at 23 °C are determined: 2.6 (0.3), ?47(1) kJ/mol (RTIL I); 2.8(0.3), ?80(3) kJ/mol (RTIL II) and 3.03 (0.08), ?47(2) kJ/mol (RTIL III). It is demonstrated that enthalpy change promotes complex formation while the corresponding change of entropy is negative and provides decomposition of [Cs(18C6)]+.  相似文献   

11.
Two Mn(II) sulfoterephthalate complexes, [Mn(HStp)(o-Phen)2] (I) and [Mn(HStp)(2,2′-Bipy)2] (II) (H3Stp = 2-sulfoterephthalic acid, o-Phen = 1,10-phenanthroline, 2,2′-Bipy = 2,2′-bipyridine), were synthesized under hydrothermal condition. Single crystal X-ray diffraction analyses reveal that complexes I and II possess similar structure, in which the center Mn2+ ions are hexa-coordinated with one Hstpanion and two N-donor ligands. For both of them, the formation of 3D supramolecular structures are based on both H-bonds and π...π/C-H...π stacking interactions. Electrochemical properties of complexes I and II have been investigated by means of cyclic voltmetry, which shows that electron transfer between Mn(III) and Mn(II) in electrolysis is quasi-reversible process.  相似文献   

12.
The Schiff base ligand (HL) obtained from phenylmethanamine and 5-methoxysalicylaldehyde are used as ligands for Co(II) and Ni(II) resulting in complexes [Co(L)2] (I) and [Ni(L)2] (II), and their solid state structures were determined by X-ray crystallography. In both complexes, weak interactions play an important role in the molecular self-assembly. Complex I was stacked up to the 2D layers by C-H…O hydrogen bonds and C-H…π interactions. In contrast, complex II was extended into 2D sheet by C-H…O hydrogen bonds, the C-H…π interactions, and edge-to-face interactions.  相似文献   

13.
The crystal structures of nitrato-{4-bromo-2-[2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (I) and nitrato-{2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (II) are determined. The crystals of compound I are orthorhombic: a = 14.157(3) Å, b = 15.420(3) Å, c = 17.494(4) Å, space group Pbca, Z = 8, R = 0.067. The crystals of compound II are monoclinic: a = 10.675 Å, b = 13.973 Å, c = 14.007 Å, β = 111.92°, space group P21/n, Z = 4, R = 0.0464. In the structures of compounds I and II, the copper atom coordinates, correspondingly, singly deprotonated 4-bromo-2-[(2-hydroxyethylimino)methyl]phenol and 2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenol molecules, and 3,5-dibromopyridine, and the nitrate ion. The coordination polyhedron of the copper ion in complexes I and II is a slightly distorted tetragonal pyramid. The bases of the pyramids are formed by the imine and pyridine nitrogen atoms and the phenolic and alcoholic oxygen atoms, and the axial vertices are occupied by the oxygen atoms of the monodentate nitrato groups. In the complexes under study, the six-membered metallocycles have asymmetric gauche conformation. In crystal, complexes I are united, due to the slip plane a, through bifurcate hydrogen bonds into infinite chains along the direction [100]. Complexes II in crystal form two-dimensional networks by means of hydrogen bonds.  相似文献   

14.
Two novel homobinuclear ytterbium(III) complexes, [Yb2(2AMB)6(H2O)4] · 2C2H6O (I) and Yb2(3AMB)6(H2O)4] · 3H2O (II) (2AMB = 2-aminobenzoic acid, 3AMB = 3-aminobenzoic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and X-ray crystallography (CIF files CCDC nos. 950103 (I), 921652 (II)). Complex I crystallizes in triclinic space group \(P\bar 1\) and complex II crystallizes in monoclinic space group P21/n. X-ray analysis shows that both complexes (I, II) have the dinuclear structure. The central Yb3+ ions in both complexes are eight-coordinated adopting distorted YbO8 dodecahedral geometry. Each Yb3+ ion is coordinated to two O atoms from bridging carboxylate, four O atoms from the chelating carboxylate ligands and two O atoms of water molecules. The crystal structure of I and II are stabilized by N-H…O, O-H…O, O-H…N, and C-H…O hydrogen bonds, C-H…π interactions and weak π-π stacking interactions.  相似文献   

15.
The diamagnetic complexes [Pd2(H2L1)Cl4] (I), [Pd2(H2L2)Cl4] (II), and Pd2(H2L3)Cl4(III) with chiral ligands derived from the natural monoterpenoid (R)-(+)-limonene are obtained (H2 L1 is ethylenediamine dioxime, H2L2 is piperazine dioxime, and H2L3 is propylenediamine dioxime). According to X-ray diffraction data, the crystal structures of complexes I and II are composed of binuclear acentric molecules. The coordination polyhedra PdN2Cl2 are trapeziums (squares distorted in a tetrahedral manner) made up of two N atoms of the tetradentate bridging cyclic ligands H2L1 and H2L2 and two Cl atoms. The fragments PdCl2 are trans in the complexes. The 13C and 1H NMR spectra of complexes I and II in CDCl3 also suggest their binuclear structures.  相似文献   

16.
Two novel lead(II) coordination polymers with the same mixed ligands, [Pb(AAP)(NIP)] n (I) and {[Pb(AAP)(NIP)] · 2H2O} n (II) (AAP = 4-aminoantipyrine and NIP2? = 5-nitroisophthalate), were prepared by controlling the pH value of the reaction mixture. Complexes I and II were characterized by X-ray single-crystal diffraction analyses (CIF files CCDC nos. 936101 (I) and 936102 (II)). Complex I with terminal AAP molecule displays a linear chain with hemidirected Pb2+ ions connected by bis-bidentate chelating-NIP2? anions. By contrast, complex II exhibits a dimeric {Pb2(AAP)2}-based coplanar layer extended by bidentate chelating-bidentate chelating and bridging-NIP2? anions. Obviously, the pH-directed structural difference is dominated by the competitive binding modes of the AAP and carboxylate groups of NIP2? ligands. Both complexes display different thermal stability due to structural difference and similar emissions originated from the intra- and/or inter-ligand electron transfer, suggesting their potential application as luminescent materials.  相似文献   

17.
Two new oxovanadium complexes, [VO2L1] (I) and [VO2L2]2 (II), where L1 and L2 are the deprotonated forms of 4-bromo-2-[(2-diethylaminoethylimino)methyl]phenol (HL1) and 4-bromo-2-{[2-(2-hydroxyethylamino)ethylimino]methyl}phenol (HL2), respectively, have been synthesized and characterized by IR spectra and single crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/n, a = 14.300(3), b = 7.010(2), c = 15.460(2) ?, ?? = 107.401(2)°, V = 1478.7(5) ?3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.270(2), b = 15.373(3), c = 11.893(3) ?, ?? = 99.302(2)°, V = 1311.8(5) ?3, Z = 2. Complex I is a mononuclear dioxovanadium(IV) complex. Complex II is a centrosymmetric dinuclear dioxovanadium(V) complex with a V...V distance of 3.117(2) ?. The Vatom in I is in a distorted square-pyramidal coordination, and that in II is in an octahedral coordination. The difference in the structures of the complexes is largely induced by the hydrogen bonds during the self-assembly process.  相似文献   

18.
Binuclear complexes of Sm(III), Eu(III), Gd(III), Tb(III), and Dy(III) nitrates with 4,4,10,10-tetramethyl-1,3,7,9-tetraazospiro[5.5]undecane-2,8-dione (C11H20N4O2, SC)—[Sm(NO3)3(SC)(H2O)]2(I), [Eu(NO3)3(SC)(H2O)]2 (II), [Gd(NO3)2(SC)(H2O)3)]2(NO3)2 (III), [Tb(NO3)3(SC)(H2O)]2 (IV), [Dy(NO3)3(SC)(H2O)]2 (V), are synthesized, and their X-ray diffraction analyses are carried out. The crystals of complexes I–V are monoclinic: space group P21/n for III and P21/c for I, II, IV, and V. In centrosymmetric coordination complexes II, III, IV, and V, the Ln atoms are coordinated by two O(1) and O(2) atoms of two molecules of the SC ligands bound by a symmetry procedure (1 ? x, ?y, 1 ? z), three bidentate nitrate anions, and a water molecule. The coordination numbers of the metal atoms are equal to 9, and the coordination polyhedra are considerably distorted three-capped trigonal prisms, whose bases include the O(1), O(2), O(12) and O(3), O(7), O(9) atoms. The dihedral angle between the bases of the prism is 18°, and that between the mean planes of the side faces is 55°–71° for I, 17° and 55°–71° for II, 16° and 55°–70° for IV, and 16° and 55°–70° for V. The Sm...Sm distance in complex I is 9.44 Å, Eu...Eu in II is 9.42 Å, Tb...Tb in IV is 9.36Å, and Dy...Dy in V is 9.36Å. The gadolinium atom in complex III is coordinated by two oxygen atoms of two ligand molecules bound by a symmetry procedure (?x, ?y + 1, ?z + 1), two bidentate nitrate anions, and three water molecules. One of the nitro groups in compound III is localized in the external coordination sphere of the metal. The coordination number of gadolinium is 9, and the coordination polyhedron is a significantly distorted three-capped trigonal prism, whose base includes the O(1), O(2), O(7) and O(4), O(5), O(9) atoms. The dihedral angle between the bases of the prism is 22.8°, and that between the mean planes of the side faces is 53°–72°. The Gd...Gd distance in complex III is 9.17 Å.  相似文献   

19.
The synthesis, characterization, spectroscopic and electrochemical properties of trans-[CoIII(L1)(Py)2]ClO4 (I) and trans-[CoIII(L2)(Py)2]ClO4 (II) complexes, where H2L1 = N,N′-bis(5-chloro-2-hydroxybenzylidene)-1,3-propylenediamine and H2L2 = N,N′-bis(5-bromo-2-hydroxybenzylidene)-1,3-propylenediamine, have been investigated. Both complexes have been characterized by elemental analysis, FT-IR, UV-Vis, and 1H NMR spectroscopy. The crystal structure of I has been determined by X-ray diffraction. The coordination geometry around cobalt(III) ion is best described as a distorted octahedron. The electrochemical studies of these complexes revealed that the first reduction process corresponding to Co(III/II) is electrochemically irreversible accompanied by dissociation of the axial Co-N(Py) bonds. The in vitro antimicrobial activity of the Schiff bse ligands and their corrsponding complexes have been tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The cobalt(III) complexes showed lower antimicrobial activity than the free Schiff base ligands.  相似文献   

20.
The stability constants of the complex[Cs(18C6)]+ (18C6 is 18-crown-6 (L)) in N-butylpyridinium methyl sulfate (I) and of the complex [Cs(18C6)2]+ in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (II) were measured by using 133Cs NMR spectroscopy at 23°C. It was found that logK(Cs + L) in solvent I is 1.20±0.13 and logK(CsL + L) in solvent IIis 1.18±0.05. For the complex [Cs(18C6)2]+, the dependence of its stability constant on the temperature in the 23–50°C range was obtained and the enthalpy change in the complexation was determined: ΔH(CsL + L)= ?47 kJ/mol. It was demonstrated that the enthalpy change is favorable for the formation of [Cs(18C6)2]+, while the entropy change hinders the complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号