首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a brief overview of surface structures of high-index GaAs surfaces, putting emphasis on recent progress in our own laboratory. By adapting a commercial scanning tunneling microscope (STM) to our molecular beam epitaxy and ultra high vacuum analysis chamber system, we have been able to atomically resolve the GaAs( )B (8 ×1), (114)Aα2(2×1), (137), (3 7 15), and (2 5 11) surface structures. In cooperation with P. Kratzer and M. Scheffler from the Theory Department of the Fritz-Haber Institute we determined the structure of some of these surfaces by comparing total-energy calculations and STM image simulations with the atomically resolved STM images. We present the results for the {112}, {113}, and {114} surfaces. Then we describe what led us to proceed into the inner parts of the stereographic triangle and to discover the hitherto unknown stable GaAs (2 5 11) surface. Received: 16 May 2001 / Accepted: 23 July 2001 / Published online: 3 April 2002  相似文献   

2.
Fe-doped GaN thin films are grown on c-sapphires by metal organic chemical vapour deposition method (MOCVD) Crystalline quality and phase purity are characterized by x-ray diffraction and Raman scattering measurements. There are no detectable second phases formed during growth and no significant degradation in crystalline quality as Fe ions are doped. Fe-related optical transitions are observed in photoluminescence spectra. Magnetic measurements reveal that the films show room-temperature ferromagnetic behaviour. The ferromagnetism may originate from carrier-mediated Fe-doped GaN diluted magnetic semiconductors or nanoscale iron clusters and FeN compounds which we have not detected.  相似文献   

3.
AlxGa1-xN epilayers with a wide Al composition range (0.2≤x≤ 0.68) were grown on AlN/sapphire templates by low-pressure metalorganic chemical vapour deposition (LP-MOCVD). X-ray diffraction results reveal that both the (0002) and (10-15) full widths at half-maximum (FWHM) of the AlxGa1-xN epilayer decrease with increasing Al composition due to the smaller lattice mismatch to the AlN template. However, the surface morphology becomes rougher with increasing Al composition due to the weak migration ability of Al atoms. Low temperature photoluminescence (PL) spectra show pronounced near band edge (NBE) emission and the NBE FWHM becomes broader with increasing Al composition mainly caused by alloy disorder. Meanwhile, possible causes of the low energy peaks in the PL spectra are discussed.  相似文献   

4.
Large-area, 1-μm-thick cubic boron nitride (cBN) films were deposited on (001) silicon substrates by electron-cyclotron-resonance-enhanced microwave-plasma chemical vapor deposition (ECR-MP CVD) in a mixture of He-Ar-N2-BF3-H2 gases. With the assistance of fluorine chemistry in the gas phase and substrate reactions, the phase purity of the sp3-configuration was improved to over 85% at a reduced substrate bias voltage of -40 V. The grown films show clear Raman transversal optical (TO) and longitudinal optical (LO) phonon vibration modes, characteristic of cBN. Such Raman spectral characteristics are the first ever observed in cBN films prepared under ECR-MP CVD conditions. Received: 3 May 2002 / Accepted: 7 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +852-2788/7830, E-mail: apwjzh@cityu.edu.hk  相似文献   

5.
6.
In this work, GaN nanowires were fabricated on Si substrates coated with NiCl2 thin films using chemical vapor deposition (CVD) method by evaporating Ga2O3 powder at 1100 °C in ammonia gas flow. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM) and photoluminescence (PL) spectrum are used to characterize the samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanowires is also discussed.  相似文献   

7.
8.
A three-step growth process is developed for depositing high-quality aluminium-nitride (AlN) epilayers on (001) sapphire by low pressure metalorganic chemical vapour deposition (LP-MOCVD). We adopt a low temperature (LT) A1N nucleation layer (NL), and two high temperature (HT) A1N layers with different V/Ⅲ ratios. Our results reveal that the optimal NL temperature is 840-880℃, and there exists a proper growth switching from low to high V/Ⅲ ratio for further reducing threading dislocations (TDs). The screw-type TD density of the optimized AIN film is just 7.86×10^6 cm^-2, about three orders lower than its edge-type one of 2×10^9 cm^-2 estimated by high-resolution x-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (TEM).  相似文献   

9.
Mn-doped GaN epitaxial films were grown by metal organic chemical vapour deposition (MOCVD). Microstructural properties of films are investigated using Raman scattering. It is found that with increasing Mn-dopants levels, longitudinal optical phonon mode A1 (LO) of films is broadened and shifted towards lower frequency. This phenomenon possibly derives from the difference in bonding strength between Ga-N pairs and Mn-N pairs in host lattice. In addition, optical properties of films are investigated using cathodoluminescence and absorption spectroscopy. Mn-related both emission band around 3.0eV and absorption bands around 1.5 and 2.95eV are observed. By studies on structural and optical properties of Mn-doped GaN, we find that Mn ions substitute for Ga sites in host lattice. However, carrier-mediated ferromagnetic exchange seems unlikely due to deep levels of Mn acceptors.  相似文献   

10.
We demonstrate area-selective epitaxy by migration-enhanced epitaxy with As2 and As4 as arsenic sources. The distinct whisker structure growing in [1 1 1]B direction is obtained when employing As2 as an arsenic source, while (1 1 1)B facet is formed with As4. The difference in the facet formation can be explained by the formation of As-trimer, which significantly reduces the growth rate of the (1 1 1)B surface. With As2, area-selective epitaxy can be achieved at lower arsenic pressure condition, where less As-trimers are formed. Therefore, growth in the [1 1 1]B direction is enhanced.  相似文献   

11.
High-quality thin films of ZrCyN1-y and the novel tribological material Zr0.8Al0.2CyN1-y have been grown by pulsed reactive crossed-beam laser ablation using Zr and Zr–Al ablation targets, respectively, and a pulsed gas. The gas mixture provided the carbon and nitrogen for the solid-solution films. Control of the stoichiometry (i.e. y) was determined by the relative partial pressures of the nitrogen- and carbon-containing gases. It was found that optimal control of the film chemistry was achieved by using the least thermally reactive gases. In this manner, it was possible to activate the gas species exclusively by collisions in the gas phase with the ablation-plume particles, thereby decoupling the chemistry from surface processes. The films were characterized for their chemical, crystallographic, optical, and tribological properties. All the films had very low impurity levels and a cubic rock salt crystal structure over the entire investigated temperature range between 100 and 600 °C. Exceedingly high quality epitaxial films could be grown on MgO (001) at 600 °C. Films grown on stainless steel were polycrystalline. The hardness of the films showed a maximum for both sets for stoichiometries predicted by a recent theoretical model for hardness based on band-structure calculations. In addition, all the films had an exceptionally low coefficient of friction versus steel. Received: 22 August 2001 / Accepted: 3 March 2002 / Published online: 19 July 2002  相似文献   

12.
The adsorption and decomposition of triethylsilane (TES) on Si(1 0 0) were studied using temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), electron stimulated desorption (ESD), and X-ray photoelectron spectroscopy (XPS). TPD and HREELS data indicate that carbon is thermally removed from the TES-dosed Si(1 0 0) surface via a β-hydride elimination process. At high exposures, TPD data shows the presence of physisorbed TES on the surface. These species are characterized by desorption of TES fragments at 160 K. Non-thermal decomposition of TES was studied at 100 K by irradiating the surface with 600 eV electrons. ESD of mass 27 strongly suggests that a β-hydride elimination process is a channel for non-thermal desorption of ethylene. TPD data indicated that electron irradiation of physisorbed TES species resulted in decomposition of the parent molecule and deposition of methyl groups on the surface that desorbed thermally at about 900 K. Without electron irradiation, mass 15 was not detected in the TPD spectra, indicating that the production of methyl groups in the TPD spectra was a direct result of electron irradiation. XPS data also showed that following electron irradiation of TES adsorbed on Si(1 0 0), carbon was deposited on the surface and could not be removed thermally.  相似文献   

13.
The good field-emission properties of carbon nanotubes coupled with their high mechanical strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radio-frequency amplifiers or field-emission-controllable cold-electron guns for field-emission displays. This fabrication process is compatible with currently used semiconductor-processing technologies. Micropatterned vertically aligned carbon nanotubes were grown on a planar Si surface or inside trenches, using chemical vapor deposition, photolithography, pulsed-laser deposition, reactive ion etching, and the lift-off method. This carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and could revolutionize the area of field-emitting electronic devices. Received: 30 August 2001 / Accepted: 3 September 2001 / Published online: 20 December 2001  相似文献   

14.
The fractal dimensions of six differently mechanically pre-treated stainless steel samples were investigated using five fractal algorithms. The surfaces were analyzed using a profiler, atomic force microscopy (AFM), scanning electron microscopy (SEM) and light microscopy (LM), and thereafter adhesively bonded and tested in single-overlap joints to test their tensile strength. All samples showed different fractal behavior, depending on the microscopic methods and fractal algorithms. However, the overall relation between fractal dimension and tensile strength is qualitatively the same, except for the SEM images. This verifies that tensile strength is correlated to fractal dimension, although only within the length-scale of the profiler and the light microscope (≈0.5–100 μm). The AFM method was excluded in this comparison, since the limitation in the z-direction for the AFM scanner made it difficult to scan the rougher parts of the blasted samples. The magnitude of the surfaces is a parameter not often considered in fractal analysis. It is shown that the magnitude, for the Fourier method, is correlated to the arithmetic average difference, Ra, but only weakly to the fractal dimension. Hence, traditional parameters, such as Ra, tell us very little about the spatial distribution of the elevation data. Received: 22 December 1999 / Accepted: 9 October 2000 / Published online: 9 February 2001  相似文献   

15.
There has been renewed interest in the structure of III-V compound semiconductor (001) surfaces caused by recent experimental and theoretical findings, which indicate that geometries different from the seemingly well-established dimer models describe the surface ground state for specific preparation conditions. I review briefly the structure information available on the (001) surfaces of GaP, InP, GaAs and InAs. These data are complemented with first-principles total-energy calculations. The calculated surface phase diagrams are used to explain the experimental data and reveal that the stability of specific surface structures depends largely on the relative size of the surface constituents. Several structural models for the Ga-rich GaAs (001)(4×6) surface are discussed, but dismissed on energetic grounds. I discuss in some detail the electronic properties of the recently proposed cation-rich GaAs (001)ζ(4×2) geometry. Received: 18 May 2001 / Revised version: 23 July 2001 / Published online: 3 April 2002  相似文献   

16.
We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 aresee among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.  相似文献   

17.
Pairs of self-assembled InMnAs quantum dot structures and reference epitaxial layers (0 < x < 0.13) were prepared on GaAs substrates by low-pressure metal organic vapour phase epitaxy. Magnetic moment measurements indicated that reference epitaxial layer had a Curie temperature of 343 K independent on the composition. On the other hand, the quantum dots prepared under Stranski-Krastanov growth mode from the identical gas phase composition showed a lower value of Curie temperature. This value varied from 41 to 235 K in relation to the material composition. Moiré fringes at transmission electron microscopy plan view were used for characterization of strain in InMnAs quantum dot structures.  相似文献   

18.
19.
The shape and the atomic arrangement of monolayer steps of graphite have been characterized by STM. The origin of the appearance of the imaged features along the steps is discussed, addressing for the first time both morphological and electronic considerations. Extended Hückel theoretical calculations of nanotubes are used to identify the contribution of the electronic structure to the STM image of monolayer steps. We show that mechanical tip–sample interactions dominate the imaging process of graphite, leading to step deformation during scanning and negative STM contrast of the atom positions in the hexagonal unit cell. Received: 11 April 2000 / Accepted: 18 April 2000 / Published online: 23 August 2000  相似文献   

20.
3 surfaces and bicrystal interfaces and the growth of YBa2Cu3O7-δ thin films on such substrates using scanning tunneling microscopy and X-ray diffraction. Proper annealing of SrTiO3 in oxygen and/or ultrahigh vacuum produces uniformly terminated, atomically flat and well-ordered surfaces. For vicinal SrTiO3(001) surfaces the particular annealing sequence and miscut angle sensitively determines the resulting step structure and thus the microscopic surface morphology. Steps of SrTiO3(001) surfaces can be adjusted to a height of one, two, or multiple times the unit-cell height (aSTO=0.3905 nm). The growth of YBa2Cu3O7-δ films on these substrates by pulsed laser deposition was traced from the initial nucleation to a thickness of about 300 nm. The morphology, texture, and defect structure of the films is determined by the specific structure and morphology of the pristine substrate. Anisotropic, planar defects, originating from substrate step edges, strongly modify the electronic transport properties of the film leading to critical currents up to ≈9×107 A/cm2 at 4 K as well as pronounced transport anisotropies. Surfaces and interface energy terms are discussed, which also determine the observed structure of bicrystal boundaries. Received: 16 April 1998/Accepted: 21 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号