首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed investigation on the direct arylation of benzene with aryl bromides by using first‐row transition metals under high‐temperature/high‐pressure (high‐T/p) conditions is described. By employing a parallel reactor platform for rapid reaction screening and discovery at elevated temperatures, various metal/ligand/base combinations were evaluated for their ability to enable biaryl formation through C? H activation. The combination of cobalt(III) acetylacetonate and lithium bis(trimethylsilyl)amide was subjected to further process intensification at 200 °C (15 bar), allowing a significant reduction of the catalyst/base loading and a dramatic increase in catalytic efficiency (turnover frequency) by a factor of 1000 compared to traditional protocols. The high‐throughput screening additionally identified novel nickel‐ and copper‐based metal/ligand combinations that favored an amination pathway competing with C? H activation, with the addition of ligands, such as 1,10‐phenanthroline, having a profound influence on the selectivity. In addition to metal‐based catalysts, high‐T/p process windows were also successfully applied to transition‐metal‐free systems, utilizing 1,10‐phenanthroline as organocatalyst.  相似文献   

2.
The capillary electrophoretic separation of Fe(II), Cu(II) and Zn(II) ions in an acidic buffer solution (pH 2.5) by complexation with 1,10-phenanthroline is investigated. As 1,10-phenanthroline is a neutral ligand, the positively charged metal complexes formed migrate in the same direction as the EOF, providing a rapid separation of metal ions in acidic buffers. The method was applied to the determination of metal ions in vitamin tablets. Received: 5 January 1998 / Revised: 27 March 1998 / Accepted: 15 May 1998  相似文献   

3.
The capillary electrophoretic separation of Fe(II), Cu(II) and Zn(II) ions in an acidic buffer solution (pH 2.5) by complexation with 1,10-phenanthroline is investigated. As 1,10-phenanthroline is a neutral ligand, the positively charged metal complexes formed migrate in the same direction as the EOF, providing a rapid separation of metal ions in acidic buffers. The method was applied to the determination of metal ions in vitamin tablets. Received: 5 January 1998 / Revised: 27 March 1998 / Accepted: 15 May 1998  相似文献   

4.
Reduction of 5-nitro-1,10-phenanthroline with hydrogen over Pd/C, followed by the treatment of 1,10-phenanthrolin-5-amine with thiophosgene in the presence of sodium acetate, gave 5-isothiocyanato-1,10-phenanthroline which is a thermally stable highly reactive ligand capable of quantitatively forming covalently bonded nanohybrid structures in a system transition metal complex-silica under mild conditions.  相似文献   

5.
Pd-catalyzed C-3 selective olefination of pyridines is developed for the first time using 1,10-phenanthroline as the ligand. This finding provides a novel disconnection for the synthesis of pyridine-containing alkaloids and drug molecules as well as a new approach for developing Pd-catalyzed C-H functionalizations of pyridines.  相似文献   

6.
J M Lin  M Yamada 《The Analyst》2001,126(6):810-815
A functional polymer for the catalysis of the chemiluminescent reaction and molecular recognition ability of 1,10-phenanthroline was prepared based on the molecular imprinting method. The structural and catalytic roles of transition metal ion interactions were applied in the material design. A ternary complex, 4-vinylpyridine-Cu(II)-1,10-phenanthroline (2:1:1), was synthesized and used as a functional monomer. The ligand 1,10-phenanthroline in the ternary complex was the template used to form the molecularly imprinted polymer. Another monomer, styrene, and the cross-linking reagent divinylbenzene were copolymerized with the ternary complex. The polymer containing the ternary complex is an efficient catalyst for the decomposition of hydrogen peroxide. During the hydrogen peroxide decomposition, superoxide radical ion is formed, which reacts with 1,10-phenanthroline and gives a chemiluminescent emission. The 1,10-phenanthroline was destroyed during the chemiluminescent reaction, leaving a cavity and copper binding sites for another 1,10-phenanthroline molecule. The prepared polymer particles were packed into a glass tube and developed as a molecular recognition chemiluminescent flow-through sensor for 1,10-phenanthroline. The sensitivity and selectivity of the sensor were tested.  相似文献   

7.
The gas-phase stabilities of Fe(Phi)3(2+) complexes, where Phi represents the 1,10-phenanthroline, 5-chloro-1,10-phenanthroline, 5-methyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline ligands were investigated by collision-induced dissociation (CID) in the capillary-first skimmer region upon changing the voltage difference between the capillary and the skimmer. The loss of only one ligand from the Fe(Phi)3(2+) complexes was observed with each of the phenanthroline ligands studied. An increase in the voltage difference between the capillary and the skimmer resulted in a higher fragmentation yield as calculated from the intensity of the precursor and the fragment ion. The fragmentation yield versus capillary-skimmer voltage difference plots were evaluated by means of the Arrhenius and the Rice-Ramsperger-Kassel (RRK) model by fitting the model parameters to the experimental data. Both models yielded practically the same results. In addition, if the internal energy gained through the capillary-skimmer region is estimated correctly, the approximate value of the critical energy (activation energy) for fragmentation can be extracted from the fragmentation yield versus capillary-skimmer voltage difference plots. It was found that the gas-phase stabilities of the Fe(Phi)3(2+) complexes are nearly identical except for the more stable Fe(II)-4,7-diphenyl-1,10-phenanthroline complex. The critical energy for fragmentation was estimated to be approximately 1.2 and 0.9 eV for the Fe(II)- 4,7-diphenyl-1,10-phenanthroline, and the other complexes, respectively.  相似文献   

8.
The ligand-dependent selectivities in Ullmann-type reactions of amino alcohols with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes were recently explained by the single-electron transfer and iodine atom transfer mechanisms (Jones, G. O., Liu, P., Houk, K. N., and Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.). The present study shows that an alternative, oxidative addition/reductive elimination mechanism may also explain the selectivities. Calculations indicate that a Cu(I) complex with a negatively charged β-diketone ligand is electronically neutral, so that oxidative addition of ArI to a β-diketone-ligated Cu(I) prefers to occur (and occur readily) in the absence of the amino alcohol. Thus, coordination of the amino alcohol in its neutral form can only occur at the Cu(III) stage where N-coordination is favored over O-coordination. The coordination step is the rate-limiting step and the outcome is that N-arylation is favored with the β-diketone ligand. On the other hand, a Cu(I) complex with a neutral 1,10-phenanthroline ligand is positively charged, so that oxidative addition of ArI to a 1,10-phenanthroline-ligated Cu(I) has to get assistance from a deprotonated amino alcohol substrate. This causes oxidative addition to become the rate-limiting step in the 1,10-phenanthroline-mediated reaction. The immediate product of the oxidative addition step is found to undergo facile reductive elimination to provide the arylation product. Because O-coordination of a deprotonated amino alcohol is favored over N-coordination in the oxidative addition transition state, O-arylation is favored with the 1,10-phenanthroline ligand.  相似文献   

9.
The aromatic C-H silylation of five-membered heteroarenes with 1,2-di-tert-butyl-1,1,2,2-tetrafluorodisilane regioselectively proceeded at 120 degrees C in octane in the presence of a catalytic amount of iridium(I) complexes generated from 1/2[Ir(OMe)(COD)]2 and 2-tert-butyl-1,10-phenanthroline.  相似文献   

10.
A series of new ternary zinc(II) complexes [Zn(L(1-10))(phen)], where phen is 1,10-phenanthroline and H(2)L(1-10)=tridentate Schiff base ligands derived from the condensation of amino acids (glycine, l-phenylalanine, l-valine, l-alanine, and l-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, (1)H NMR, and (13)C NMR spectra. The IR spectra of the complexes showed large differences between nu(as)(COO) and nu(s)(COO), Deltanu (nu(as)(COO)-nu(s)(COO)) of 191-225 cm(-1), indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.  相似文献   

11.
王娟  吕鑫  何福兰  苏进雄 《应用化学》2011,28(2):168-176
水热条件下合成了一种含铀的超分子化合物[UO2Cl4][phenH]2(phen=1,10-邻菲罗啉),进行了X射线单晶衍射、红外光谱、紫外光谱和荧光光谱分析。 晶体结构分析表明,该化合物由2个[phenH]+阳离子和1个阴离子[UO2Cl4]2-组成。 红外光谱和X射线单晶衍射表明,标题化合物的三维框架是由N-H…Cl、C-H…Cl和C-H…O弱氢键相互作用所构建。 中心U原子是六配位,有4个Cl原子和2个O原子。 此外,没参与配位的phen利用氢键和π…π堆积与[UO2Cl4]2-相互作用。 含U原子的阴离子是一种扭曲八面体结构。 利用溶胶-凝胶法合成了化合物的PVA薄膜。 标题化合物和薄膜均有较强的荧光性。CCDC:713149  相似文献   

12.
Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.  相似文献   

13.
Multiply deprotonated hexadeoxyadenylate anions, (A6-nH)(n-), where n = 3-5, have been subjected to reaction with a range of divalent transition-metal complex cations in the gas phase. The cations studied included the bis- and tris-1,10-phenanthroline complexes of CuII, FeII, and CoII, as well as the tris-1,10-phenanthroline complex of RuII. In addition, the hexadeoxyadenylate anions were subjected to reaction with the singly charged FeIII and CoIIIN,N'-ethylenebis(salicylideneiminato) complexes. The major competing reaction channels are electron-transfer from the oligodeoxynucleotide anion to the cation, the formation of a complex between the anion and cation, and the incorporation of the transition-metal into the oligodeoxynucleotide. The latter process proceeds via the anion/cation complex and involves displacement of the ligand(s) in the transition-metal complex by the oligodeoxynucleotide. Competition between the various reaction channels is governed by the identity of the transition-metal cation, the coordination environment of the metal complex, and the oligodeoxynucleotide charge state. In the case of the divalent metal phenanthroline complexes, competition between electron-transfer and metal ion incorporation is particularly sensitive to the coordination number of the reagent metal complexes. Both electron-transfer and metal ion incorporation occur to significant extents with the bis-phenanthroline ions, whereas the tris-phenanthroline ions react predominantly by metal ion incorporation. To our knowledge this work reports the first observations of the gas-phase incorporation of multivalent transition-metal cations into oligodeoxynucleotide anions and represents a means for the selective incorporation of transition-metal counter-ions into gaseous oligodeoxynucleotides.  相似文献   

14.
Schmittel M  Lin H 《Inorganic chemistry》2007,46(22):9139-9145
The crown ether-linked iridium(III) complex [Ir(ppy)2 (di-aza-phen)]+ (1) {ppy = 2-phenylpyridine and di-aza-phen = 4,7-di(1,4-dioxa-7,13-dithia-10-azacyclopenta-dec-10-yl)-1,10-phenanthroline (7)} has been prepared. Compound 1 exhibits a notable luminescence enhancement in the presence of Ag+ in aqueous media. The analogous ruthenium(II) complex [Ru(phen)2(di-aza-phen)]2+ (4) {phen = 1,10-phenanthroline}, although equally exhibiting a luminescence enhancement in the presence of Ag+, is a far inferior sensor for Ag+ than 1. The 10 times higher luminescence enhancement (I - I0)/I0 of 1 was attributed to a dominance of the emission involving the di-aza-phen ligand that is responsible for binding to the metal ion. In contrast, the 3MLCT emission of 4 does not involve the di-aza-phen ligand but does involve the phen ligand, thus only allowing for a remote effect upon addition of Ag+ ions. While 1 is a highly selective chemosensor for Ag+ in the presence of many metal ions, there is a strong interference of Hg2+ that may restrict its practical use.  相似文献   

15.
An iron-catalyzed C-C bond formation reaction of a nitrogen-containing aromatic compound with an arylzinc reagent takes place at 0 degrees C in a good to quantitative yield. The reaction involves a C-H bond activation directed by a neighboring nitrogen atom. The important additives in this reaction are 1,10-phenanthroline, tetramethylethylenediamine, and 1,2-dichloro-2-methylpropane, in the absence of which a very low product yield was observed.  相似文献   

16.
The encapsulation of three platinum(II)-based anticancer complexes, [(5,6-dimethyl-1,10-phenanthroline)(1 S,2 S-diaminocyclohexane)platinum(II)] (2+) ( 56MESS), [(5,6-dimethyl-1,10-phenanthroline)(1 R,2 R-diaminocyclohexane)platinum(II)] (2+) ( 56MERR), and [(5,6-dimethyl-1,10-phenanthroline)(ethylenediamine)platinum(II)] (2+) ( 56MEEN), with carboxylated-beta-cyclodextrin (c-beta-CD) and p-sulfonatocalix[4]arene (s-CX[4]) has been examined by one- and two-dimensional (1)H nuclear magnetic resonance (NMR) spectroscopy, pulsed gradient spin-echo NMR, ultraviolet spectrophotometry, glutathione degradation experiments, and growth inhibition assays. Titration of any of the three metal complexes with c-beta-CD resulted in 1:1 encapsulation complexes with the cyclodextrin located over the intercalating ligand of the metal complexes, with a binding constant of 10 (4)-10 (5) M (-1). In addition to binding over the phenanthroline ligand of 56MEEN, c-beta-CD was also found to portal bind to the ethylenediamine ligand, with fast exchange kinetics on the NMR timescale between the two binding sites. In contrast, the three metal complexes all formed 2:2 inclusion complexes with s-CX[4] where the two metal complexes stacked in a head-to-tail configuration and were capped by the s-CX[4] molecules. Interestingly, the 56MEEN-s-CX[4] complex appeared to undergo a thermodynamically controlled rearrangement to a less soluble complex over time. Encapsulation of the metal complexes in either c-beta-CD or s-CX[4] significantly decreased the metal complexes' rate of diffusion, consistent with the formation of larger particle volumes. Encapsulation of 56MESS within s-CX[4] or c-beta-CD protected the metal complex from degradation by reduced L-glutathione, with a reaction half-life greater than 9 days. In vitro growth inhibition assays using the LoVo human colorectal cancer cell line showed no significant change in the cytotoxicity of 56MESS when encapsulated by either s-CX[4] or c-beta-CD.  相似文献   

17.
The 2-alkoxyimidate-1,10-phenanthroline complexes of manganese, cobalt and nickel have been synthesized by the reaction of 2-cyano-1,10-phenanthroline with metal dichloride in the corresponding alcohol. The metal complexes bearing two 2-cyano-1,10-phenanthrolines were isolated in non-protonic solvent as the coordination around metal core with two ligands and two chlorides. The alkoxyimidation of nitrile linked on ligand was speeded in forming the 2-alkoxyimidate-1,10-phenanthrolinyl metal complexes. All the complexes have been characterized by FT-IR spectra and elemental analysis, and some of their structures have also been confirmed by single-crystal X-ray diffraction analysis. All the metal complexes were evaluated in the catalytic oligomerization of ethylene with some alkylaluminums as co-catalyst; in which manganese complexes were less active, cobalt complexes showed low to moderate activities, and nickel complexes gave moderate to good activities.  相似文献   

18.
The synthesis of a new Schiff base containing 1,10-phenanthroline-2,9-dicarboxaldehyde and 2-mercaptoethylamine is described. The reaction of 1,10-phenanthroline-2,9-dicarboxaldehyde with 2-mercaptoethylamine leads to 2,9-bis(2-ethanthiazolinyl)-1,10-phenanthroline (I) which undergoes rearrangement when reacted with manganese, nickel, copper or zinc ions to produce complexes of the tautomeric Schiff base 2,9-bis[2-(2-mercaptoethyl)-2-azaethene]-1,10-phenanthroline (L). The [M(L)Cl2] complexes [where M = Mn(II), Ni(II), Cu(II) and Zn(II) ions] were characterized by physical and spectroscopic measurements which indicated that the ligand is a tetradentate N4 chelating agent.  相似文献   

19.
This article describes the copper-catalyzed oxidative trifluoromethylation of heteroarenes and highly electron-deficient arenes with CF(3)SiMe(3) through direct C-H activation. In the presence of catalyst Cu(OAc)(2), ligand 1,10-phenanthroline and cobases tert-BuONa/NaOAc, oxidative trifluoromethylation of 1,3,4-oxadiazoles with CF(3)SiMe(3) proceeded smoothly using either air or di-tert-butyl peroxide as an oxidant to give the corresponding trifluoromethylated 1,3,4-oxadiazoles in high yields. Di-tert-butyl peroxide was chosen as the suitable oxidant for oxidative trifluoromethylation of 1,3-azoles and perfluoroarenes. Cu(OH)(2) and Ag(2)CO(3) were the best catalyst and oxidant for direct oxidative trifluoromethyaltion of indoles. The optimum reaction conditions enable oxidative trifluoromethylation of a range of heteroarenes that bear numerous functional groups. The prepared trifluoromethylated heteroarenes are of importance in the areas of pharmaceuticals and agrochemicals. The preliminary mechanistic studies of these oxidative trifluoromethylations are also reported.  相似文献   

20.
The ring opening reaction of pyromellitic dianhydride by methanol is an effective method to prepare first row transition metal dicarboxylate complexes. The reactions of different first row transition metal salts with pyromellitic dianhydride in the presence of nitrogen donating bidentate ligands such as 1,10-phenanthroline and 2,2′-bipyridine gives different compositions depending on the ligand and the metal salts used. For example, the reaction of nickel(II) acetate with pyromellitic dianhydride in the presence of 1,10-phenanthroline results in the formation of a carboxylato bridged nickel(II) metallacycle through the ring opening reaction of pyromellitic dianhydride (PAH) at the 1 and 3-positions, whereas a mononuclear tetra-aqua 2,2′-bipyridine nickel(II) complex is formed in a similar reaction of nickel(II) acetate through ring opening at the 1,4-position of PAH. Mononuclear cobalt(II) dicarboxylate complexes are formed from the ring opening reaction of pyromellitic dianhydride in methanol in the presence of the nitrogen donor ligands 1,10-phenanthroline or 2,2′-bipyridine. Copper(II) chloride on reaction with PAH and 2,2′-bipyridine gives a mononuclear complex via ring opening at the 1 and 4-positions; having chlorides inside and outside the coordination sphere. Whereas, the reaction of copper(II)acetate gives dinuclear copper complexes having a monodentate carboxylato bridge arising from the carboxylato groups at the 1 and 4-positions on the aromatic ring. The crystal structures of all the complexes have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号