首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Urine is universally recognized as one of the best non-invasive matrices for biomonitoring exposure to a broad range of xenobiotics, including toxic metals. Detection of metal ions in urine has been problematic due to the protein competition and electrode fouling. For direct, simple, and field-deployable monitoring of urinary Pb, electrochemical sensors employing superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) has been developed. The metal detection involves rapid collection of dispersed metal-bound nanoparticles from a sample solution at a magnetic or electromagnetic electrode, followed by the stripping voltammetry of the metal in acidic medium. The sensors were evaluated as a function of solution pH, the binding affinity of Pb to DMSA-Fe3O4, the ratio of nanoparticles per sample volume, preconcentration time, and Pb concentrations. The effect of binding competitions between the DMSA-Fe3O4 and urine constituents for Pb on the sensor responses was studied. After 90 s of preconcentration in samples containing 25 vol.% of rat urine and 0.1 g L(-1) of DMSA-Fe3O4, the sensor could detect background level of Pb (0.5 ppb) and yielded linear responses from 0 to 50 ppb of Pb, excellent reproducibility (%RSD of 5.3 for seven measurements of 30 ppb Pb), and Pb concentrations comparable to those measured by ICP-MS. The sensor could also simultaneously detect background levels (<1 ppb) of Cd, Pb, Cu, and Ag in river and seawater.  相似文献   

2.
Microanalyzer for biomonitoring lead (Pb) in blood and urine   总被引:1,自引:0,他引:1  
Biomonitoring of lead (Pb) in blood and urine enables quantitative evaluation of human occupational and environmental exposures to Pb. State-of-the-art ICP–MS instruments can only analyze metals in laboratories, resulting in lengthy turnaround times, and they are expensive. In response to the growing need for a metal analyzer capable of on-site, real-time monitoring of trace toxic metals in individuals, we developed a portable microanalyzer based on flow-injection/stripping voltammetry (ASV), and validated the system using rat blood and urine spiked with known amounts of Pb. Fouling of electrodes by proteins often prevents the effective use of electrochemical sensors in biological matrices. Minimization of such fouling was accomplished with suitable sample pretreatment and by establishing turbulent flow of blood and urine containing Pb onto the electrode inside the microanalyzer, which resulted in no apparent electrode fouling even when the samples contained 50% urine or 10% blood by volume. No matrix effect was observed for the voltammetric Pb signals, even when the samples contained 10% blood or 10% urine. The microanalyzer offered linear concentration ranges relevant to Pb exposure levels in humans (0–20 ppb in 10% blood samples, 0–50 ppb in 50% urine samples). The device showed excellent sensitivity and reproducibility; Pb detection limits were 0.44 ppb and 0.46 ppb, and % R.S.D. was 4.9 and 2.4 in 50% urine and 10% blood samples, respectively. It gave similar Pb concentrations in blood and urine to those measured by ICP–MS. It offered high throughput (3 min per sample) and economical use of samples (60 μL per measurement) as well as low reagent consumption (1 μg of Hg per measurement), thus minimizing environmental concerns associated with mercury use. Since it is miniaturized, the microanalyzer is portable and field-deployable. Thus, it shows much promise as the next-generation analyzer for the biomonitoring of toxic metals.  相似文献   

3.
Here we investigate the use of 3D printed graphene/poly(lactic acid) (PLA) electrodes for quantifying trace amounts of Hg, Pb, and Cd. We prepared cylindrical electrodes by sealing a 600 μm diameter graphene/PLA filament in a pipette tip filled with epoxy. We characterized the electrodes using scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry in ferrocene methanol. The physical characterization showed a significant amount of disorder in the carbon structure and the electrochemical characterization showed quasi‐reversible behavior without any electrode pretreatment. We then used unmodified graphene/PLA electrode to quantify Hg, and Pb and Cd in 0.01 M HCl and 0.1 M acetate buffer using square wave anodic stripping voltammetry. We were able to quantify Hg with a limit of detection (LOD) of 6.1 nM (1.2 ppb), but Pb and Cd did not present measurable peaks at concentrations below ~400 nM. We improved the LODs for Pb and Cd by depositing Bi microparticles on the graphene/PLA and, after optimization, achieved clear stripping peaks at the 20 nM level for both ions (4.1 and 2.2 ppb for Pb2+ and Cd2+, respectively). The results obtained for all three metals allowed quantification below the US Environmental Protection Agency action limits in drinking water.  相似文献   

4.
A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L−1. With an accumulation period of 120 s detection limits of 0.09 ng mL−1, 0.06 ng L−1 and 0.08 ng L−1 were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

5.
A novel voltammetric method for the sensitive and selective determination of cadmium and lead ions using screen-printed carbon electrodes (SPCEs) modified with carbon-deposited natural halloysite (C_Hal) and multi-walled carbon nanotubes (MWCNTs) was developed. The electrochemical properties of the proposed sensor were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), while the morphology and structure were established by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). A two-factorial central composite design (CCD) was employed to select the composition of the nanocomposite modifying the electrode surface. The optimal measuring parameters of differential pulse anodic stripping voltammetry (DPASV) used for quantitative analysis were established with the Nelder–Mead simplex method. In the analytical investigation of Cd(II) and Pb(II) ions by DPASV, the MWCNTs/C_Hal/Nafion/SPCE exhibited a linear response in the concentration range of 0.1–10.0 µmol L−1 (for both ions) with a detection limit of 0.0051 and 0.0106 µmol L−1 for Pb(II) and Cd(II), respectively. The proposed sensor was successfully applied for the determination of metal ions in different natural water and honey samples with recovery values of 96.4–101.6%.  相似文献   

6.
Multiwall carbon nanotubes were dispersed in Nafion (MWCNTs‐NA) solution and used in combination with bismuth (MWCNTs‐NA/Bi) for fabricating composite sensors to determine trace Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the MWCNTs‐NA/Bi composites film modified glassy carbon electrode (GCE) were evaluated. The synergistic effect of MWCNTs and bismuth composite film was obtained for Pb(II) and Cd(II) detection with improved sensitivity and reproducibility. Linear calibration curves ranged from 0.05 to 100 μg/L for Pb(II) and 0.08 to 100 μg/L for Cd(II). The determination limits (S/N=3) were 25 ng/L for Pb and 40 ng/L for Cd, which compared favorably with previously reported methods in the area of electrochemical Pb(II) and Cd(II) detection. The MWCNTs‐NA/Bi composite film electrodes were successfully applied to determine Pb(II) and Cd(II) in real sample, and the results of the present method agreed well with those of atomic absorption spectroscopy.  相似文献   

7.
A fully automated portable analyzer for toxic metal ion detection based on a combination of a nanostructured electrochemical sensor and a sequential flow injection system has been developed in this work. The sensor was fabricated from a carbon paste electrode modified with acetamide phosphonic acid self-assembled monolayer on mesoporous silica (Ac-Phos SAMMS) which was embedded in a very small wall-jet (flow-onto) electrochemical cell. The electrode is solid-state and mercury-free. Samples and reagents were injected into the system and flowed through the electrochemical cell by a user programmable sequential flow technique which required minimal volume of samples and reagents and allowed the automation of the analyzer operation. The portable analyzer was evaluated for lead (Pb) detection due to the excellent binding affinity between Pb and the functional groups of Ac-Phos SAMMS as well as the great concern for Pb toxicity. Linear calibration curve was obtained in a low concentration range (1-25 ppb of Pb(II)). The reproducibility was excellent; the percent relative standard deviation was 2.5 for seven consecutive measurements of 10 ppb of Pb(II) solution. Excess concentrations of Ca, Ni, Co, Zn, and Mn ions in the solutions did not interfere with detection of Pb, due to the specificity and the large number of the functional groups on the electrode surface. The electrode was reliable for at least 90 measurements over 5 days. This work is an important milestone in the development of the next-generation metal ion analyzers that are portable, fully automated, and remotely controllable.  相似文献   

8.
《Electroanalysis》2017,29(10):2332-2339
A portable sensor based on a microband design for arsenic detection in drinking water is presented. The work was focused to minimize interference encountered with a standard screen‐printed electrodes featuring an onboard gold working electrode, carbon counter and silver−silver chloride pseudo‐reference electrodes as composite coatings on plastic surface. The interference effect was identified as chloride ions interacting with the silver surface of the reference electrode and formation of soluble silver chloride complexes such as AgCl43−. By modification of the reference electrodes with Nafion membrane (5 % in alcohols), the interference was entirely eliminated. However, membrane coverage and uniformity can impact the electrodes reproducibility and performance. Hence, the sensor design was further considered and a microband format was produced lending favorable diffusive to capacitive current characteristics. Using the microband electrodes allowed As(III) detection with limit of detection of 0.8 ppb (in 4 M HCl electrolyte), inherently avoiding the problems of electrode fouling and maximizing analyte signal in river water samples. This is below the World Health Organization limit of 10 μg L−1 (ppb). The electrolyte system was chosen so as to avoid problems from other common metal ions, most notably Cu(II). The presented electrode system is cost effective and offers a viable alternative to the colorimetric test kits presently employed for arsenic analysis in drinking water.  相似文献   

9.
《Electroanalysis》2017,29(3):880-889
A new method for modifying electrodes with Ag nanoparticles (AgNPs) using electrospray deposition for sensitive, selective detection of Zn(II), Cd(II), and Pb(II) in aerosol samples when combined with Bismuth and Nafion coating and square‐wave anodic stripping voltammetry (SWASV) is reported. Carbon stencil‐printed electrodes (CSPEs) fabricated on a polyethylene transparency (PET) sheet were produced for an inexpensive, simple to fabricate, disposable sensor that can be used with the microliter sample volumes for analysis. Sensor performance was improved by modifying the electrode surface with electrospray‐deposited AgNPs. The use of electrospray deposition resulted in more uniform particle dispersion across the electrode surface when compared to drop‐casting. Using AgNP‐modified electrodes combined with Bi and Nafion, experimental detection limits (LODs) of 5.0, 0.5, and 0.1 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively, were achieved. The linear working ranges were 5.0–400.0 μg L−1, 0.5–400.0 μg L−1, and 0.1–500.0 μg L−1 for Zn(II), Cd(II), and Pb(II), respectively. Interference studies showed Cu(II) was the only metal that interfered with this assay but inference could be eliminated with the addition of ferricyanide directly to the sample solution. This electrochemical sensor was applied for the simultaneous determination of Zn(II), Cd(II), and Pb(II) within source particulate matter (PM) samples collected on filters using an aerosol test chamber.  相似文献   

10.
Chong KF  Loh KP  Ang K  Ting YP 《The Analyst》2008,133(6):739-743
A whole-cell environmental biosensor was fabricated on a diamond electrode. Unicellular microalgae Chlorella vulgaris was entrapped in the bovine serum albumin (BSA) membrane and immobilized directly onto the surface of a diamond electrode for heavy metal detection. We found that the unique surface properties of diamond reduce the electrode fouling problem commonly encountered with metal electrodes. The cell-based diamond biosensor can attain a detection limit of 0.1 ppb for Zn(2+) and Cd(2+), and exhibits higher detection sensitivity and stability compared to platinum electrodes.  相似文献   

11.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

12.
Kokkinos C  Economou A 《Talanta》2011,84(3):696-701
This work is a study of the analytical utility of Nafion-modified microfabricated bismuth film electrodes (BiFEs) for the determination of Pb(II) and Cd(II) by anodic stripping voltammetry (ASV) in the presence of surfactants. Micro-fabricated BiFEs were prepared by depositing a thin film of bismuth on the surface of a silicon substrate by sputtering while the two-dimensional geometry of the final sensors was defined by photolithography. The BiFEs were further drop-coated with a Nafion film. These devices were applied to the determination of Pb(II) and Cd(II) by square wave ASV (SWASV) in the presence of Triton X-100 (a non-ionic surfactant), cetyltrimethylammonium bromide (CTAB) (a cationic surfactant) and sodium dodecyl sulphate (SDS) (an anionic surfactant). It was found that the presence of Nafion afforded an increase in sensitivity and the tolerance against surfactants but these properties were severely influenced by both the thickness of the Nafion film and the nature of the interfering surfactant. Using a Nafion of 0.4 μm thickness and 120 s of preconcentration, the repeatability (expressed as the % relative standard deviation on the same sensor (n = 8)) at the 20 μg l−1 level was 3.8% for Pb(II) and 3.1% for Cd(II) and the limits of detection were 0.5 μg l−1 for Cd(II) and Pb(II). The sensors were applied to Cd(II) and Pb(II) determination in a certified lake-water sample.  相似文献   

13.
Knake R  Jacquinot P  Hauser PC 《The Analyst》2002,127(1):114-118
The effect of the nature of the working electrode used in amperometric gas sensors on the performance criteria of sensitivity, detection limit, gas flow rate and humidity dependence was evaluated. The arrangement based on metallized ion-exchange membranes (Nafion) was compared with gas-diffusion electrodes based on porous poly(tetrafluoroethylene) (PTFE) with metallic electrodes deposited on the rear side. Two representative analyte gases were chosen: SO2, which has fast reaction kinetics, and NO, which has slow reaction kinetics. It was found that both types of electrodes showed a similar performance. A dependence on the flow rate of the sample gas was found in both cases. The sensitivities were higher for the ion-exchange membrane-backed electrodes; however, the 3sigma detection limits were all in the lower ppb range and for NO were significantly lower on the Nafion membrane than on the PTFE membrane. The Nafion electrode was found to show a dependence on the relative humidity of the gas stream, but not the PTFE-based electrode.  相似文献   

14.
Metal species can be extracted/preconcentrated onto electropolymerized polypyrrole film electrodes without deliberate incorporation of chemically active counterions. Silver species preconcentrated on polypyrrole film can be determined electrochemically. The effects of polypyrrole film coverage, electropolymerization conditions,solution composition and the presence of other species have been investigated. Experimental results showed that the anodic peak current for incorporated silver species was proportional to silver concentration in solution in the range from 2 to 150 μM. The detection limit was estimated to be about 0.2 \μM (20 ppb). Most of the metal ions studied, including Ni, Cd, Pb, Zn and Fe, did not show obvious interference on the determination. Cu and Hg were also extracted onto polypyrrole film electrodes. Polypyrrole film electrodes were reuseable. The mechanism involved in the preconcentration was also investigated.  相似文献   

15.
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1‐butyl‐3‐methyl‐imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4‐styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)64?/Fe(CN)63? can be effectively improved at the PSS‐BMIMPF6 modified GC. The bismuth modified PSS‐BMIMPF6 composite film electrodes (GC/PSS‐BMIMPF6/BiFEs) displayed high mechanical stability and sensitive stripping voltammetric performances for the determination of trace metal cations. The GC/PSS‐BMIMPF6/BiFE exhibited well linear response to both Cd(II) and Pb(II) over a concentration range from 1.0 to 50 μg L?1. And the detection limits were 0.07 μg L?1 for Cd(II) and 0.09 μg L?1 for Pb(II) based on three times the standard deviation of the baseline with a preconcentration time of 120 s, respectively. Finally, the GC/PSS‐BMIMPF6/BiFEs were successfully applied to the determination of Cd(II) and Pb(II) in real sample, and the results of present method agreed well with those of atomic absorption spectroscopy.  相似文献   

16.
Anodic stripping voltammetry (ASV) has been widely used for the detection of several heavy metal ions in neutral and acidic solution, in many cases employing electrodes and/or solutions incorporating Bi. In this work we demonstrate that Bi(OH)4 ion concentration can be measured in highly alkaline 8.5 M KOH solution using ASV. The addition of Pb in similar concentrations to the Bi(OH)4 being measured is shown to improve both the sensitivity and precision of the method. When the Pb additive is employed, a formal limit of detection of 8.5 ppb is achieved, compared to 17.3 ppb when the Pb additive is not used. Due to the use of Bi additives in alkaline battery chemistries, it follows that separators which limit Bi(OH)4 diffusion into the bulk electrolyte and away from the electrodes are of interest. For this purpose, we utilize ASV to determine Bi(OH)4 diffusion rates through Celgard 3501, cellophane 350P00, and Nafion 211. Bi(OH)4 crossover rates, as determined by ASV, are shown to be repeatable and consistent with expectations from the known separator structure.  相似文献   

17.
A stable composite film of multi-walled carbon nanotubes (MWNTs) with a Nafion™ cation exchanger membrane is prepared using a simple and reproducible cast deposition methodology. The MWNTs are cylindrical with diameters in the range of 40–60 nm and a length of up to several micrometers. They provide sufficiently high electrical conductivity across the film. Nafion™ acts both as a binder for the carbon structure and selectivity introducing matrix as shown by voltammetric experiments with the Fe(CN)63−/4− redox system.The anodic stripping responses for Cd and Pb metal accumulated from a solution of 0.2–1 µM in 0.1 M acetate buffer are demonstrated and optimized. The limit of detection under these conditions is typically 51 nM. The feasibility of using the MWNTs/Nafion™ thin film electrode for the anodic stripping voltammetric determination of cadmium and lead in 0.1 M acetate buffer in the presence of surfactants/interferents is examined. Sodium dodecyl sulfate (SDS), Triton X-100 (TX-100), dodecyl pyridinium chloride (DPC), and bovine serum albumin (BSA) were examined as four typical interferents. Relatively small enhancing and suppressing effects on the stripping peak currents for Cd and for Pb detection at the MWNTs/Nafion™ film modified electrode were observed. The MWNTs/Nafion™ thin film electrode performed very well even in the presence of the cationic surfactant DPC and could in future be of wider applicability.  相似文献   

18.
《Electroanalysis》2017,29(2):514-520
A long‐life electrochemical sensor for the continuous analysis of heavy metal ions (Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II)) was developed using the graphene oxide (GO) anchored‐functionalized polyterthiophene (poly[3′‐(2‐aminopyrimidyl)‐2,2′:5′,2′′‐terthiophene], polyPATT) composite. The PATT monomer was synthesized and polymerized with GO to form the composite using a potential cycling method, followed by Nafion coating. The modified sensor surface was characterized employing electrochemical and surface analysis methods. Experimental variables affecting the analytical performance were optimized. Interference effects of other metal ions having similar redox potentials were also investigated. The performance of chronocoulometry (CC) without predeposition was compared with the results of square wave anodic stripping voltammetry (SWASV) with predeposition. The dynamic range of CC for the target ions were between 1 ppb and 10 ppm, respectively with the detection limits between 0.05 (±0.05) and 0.20 (±0.15) ppb for the CC method without predeposition, and between 0.08 (±0.05) and 0.30 (±0.12) ppb for the SWASV with 300 sec of deposition time (n=3 ). The reliability of the method was evaluated by continuously analysing environmental water samples using a single sensor probe in a flow system for 93 days.  相似文献   

19.
《Electroanalysis》2017,29(11):2444-2453
Heavy metals, being one of the most toxic and hazardous pollutants in natural water, are of great public health concern. Much effort is still being devoted to the optimization of the electroanalytical methods and devices, particularly for the development of novel electrode materials in order to enhance selectivity and sensitivity for the analysis of heavy metals. The ability of 3D‐printing to fabricate objects with unique structures and functions enables infinite possibilities for the creation of custom‐made electrochemical devices. Here, stainless steel 3D‐printed electrodes (3D‐steel) have been tested for individual and simultaneous square wave anodic stripping analysis of Pb and Cd in aqueous solution. Electrodeposition methods have also been employed to modify the steel electrode surface by coating with a thin gold film (3D−Au) or a bismuth film (3D−Bi) to enhance the analytical performance. All 3D‐printed electrodes (3D‐steel, 3D−Au and 3D−Bi) have been tested against a conventionally employed glassy carbon electrode (GC) for comparison. The surface modified electrodes (3D−Au and 3D−Bi) outperformed the GC electrode demonstrating higher sensitivity over the studied concentration ranges of 50–300 and 50–500 ppb for Pb and Cd, respectively. Owing to the bismuth property of binary alloys formation with heavy metals, 3D−Bi electrode displayed well‐defined, reproducible signals with relatively low detection limits of 3.53 and 9.35 ppb for Pb and Cd, respectively. The voltammetric behaviour of 3D−Bi electrode in simultaneous detection of Pb and Cd, as well as in individual detection of Pb in tap water was also monitored. Overall, 3D‐printed electrodes exhibited promising qualities for further investigation on a more customizable electrode design.  相似文献   

20.
The feasibility of fabricating lead-sensitive chemically modified electrodes (CMEs) for trace analysis in aqueous and 40% (v/v) ethanol-water media was investigated. Carbon paste electrodes modified with crown ethers were constructed by mixing the crown ethers into a graphite powder-paraffin oil matrix. The thus-formed electrodes were able to bind Pb(II) ions chemically, and gave better voltammetric responses than unmodified ones. The crown ethers studied and compared were 18-crown-6 and dibenzo-18-crown-6. With a 5% 18-crown-6 CME, Pb(II) could be quantified at sub-ppm levels by differential pulse voltammetry with a detection limit of 0.02 ppm. It was possible to selectively pick up Pb(II) from a solution of several other ions at an open circuit through complexation. A simultaneous analysis of Cu(II) and Pb(II) was also attempted. By differential pulse anodic stripping voltammetry Pb(II) could be quantified over the range of 1 to 100 ppb. Interference from metal ions like Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Ag(I), Fe(III), Ca(II) and Mg(II) was also studied. The method was successfully applied to artificial as well as commercial samples of alcoholic beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号