首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol (W|OCT) interface have been electrochemically studied by means of novel three-phase and thin-film electrodes. Three-phase electrodes used for thermodynamics measurements comprise edge plane pyrolytic graphite, the surface of which was partly modified with an ultrathin film of OCT, containing hydrophobic lutetium bis(tetra-tert-butylphthalocyaninato) (Lu[tBu4Pc]2) as a redox probe. The transfers of anions and cations from W to OCT were electrochemically driven by reversible redox transformations of Lu[tBu4Pc]2 to chemically stable lipophilic monovalent cation and anion , respectively. Upon reduction of Lu[tBu4Pc]2, the transfers of alkali metal cations from W to OCT have been studied for the first time, enabling estimation of their Gibbs transfer energies. For kinetic measurements, a thin-film electrode configuration has been used, consisting of the same electrode covered completely with a thin layer of OCT that contained the redox probe and a suitable electrolyte. Combining the fast and sensitive square-wave voltammetry with thin-film electrodes, the kinetics of , , and Cl transfers have been estimated. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

2.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

3.
The electrochemical properties of boron-doped diamond (BDD) polycrystalline films grown on tungsten wire substrates using ethanol as a precursor are described. The results obtained show that the use of ethanol improves the electrochemistry properties of “as-grown” BDD, as it minimizes the graphitic phase upon the surface of BDD, during the growth process. The BDD electrodes were characterized by Raman spectroscopy, scanning electronic microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The boron-doping levels of the films were estimated to be ∼1020 B/cm3. The electrochemical behavior was evaluated using the and redox couples and dopamine. Apparent heterogeneous electro-transfer rate constants were determined for these redox systems using the CV and EIS techniques. values in the range of 0.01–0.1 cm s−1 were observed for the and redox couples, while in the special case of dopamine, a lower value of 10−5 cm s−1 was found. The obtained results showed that the use of CH3CH2OH (ethanol) as a carbon source constitutes a promising alternative for manufacturing BDD electrodes for electroanalytical applications.  相似文献   

4.
The behavior of dense ceramic anodes made of perovskite-type (x = 0.30–0.70; y = 0–0.05; z = 0–0.20) and K2NiF4-type (Me = Co, Cu; x = 0–0.20) indicates significant influence of metal hydroxide formation at the electrode surface on the oxygen evolution reaction (OER) kinetics in alkaline solutions. The overpotential of cobaltite electrodes was found to decrease with time, while cyclic voltammetry shows the appearance of redox peaks characteristic of Co(OH)2/CoOOH. This is accompanied with increasing effective capacitance estimated from the impedance spectroscopy data, because of roughening of the ceramic surface. The steady-state polarization curves of in the OER range, including the Tafel slope, are very similar to those of model Co(OH)2–La(OH)3 composite films where the introduction of lanthanum hydroxide leads to decreasing electrochemical activity. La2NiO4-based anodes exhibit a low electrochemical performance and poor stability. The effects of oxygen nonstoichiometry of the perovskite-related phases are rather negligible at high overpotentials but become significant when the polarization decreases, a result of increasing role of oxygen intercalation processes. The maximum electrocatalytic activity to OER was observed for A-site-deficient , where the lanthanum content is relatively low and the Co4+ concentration determined by thermogravimetric analysis is highest compared to other cobaltites. Applying microporous layers made of template-synthesized nanocrystalline leads to an improved anode performance, although the effects of microstructure and thickness are modest, suggesting a narrow electrochemical reaction zone. Further enhancement of the OER kinetics can be achieved by electrodeposition of cobalt hydroxide- and nickel hydroxide-based films. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

5.
Non-perovskite SrFeCo0.5O x (SFC2) was found to have high electronic and ionic conductivities as well as structural stability. At 800°C in air, total and ionic conductivities of 17 and 7 S·cm−1 were measured, respectively; the ionic transference number was calculated to be ≈0.4. This material is unique because of its high electronic conductivity and comparable electronic and ionic transference numbers. X-ray diffraction analysis showed that air-sintered SFC2 consists of three phase components, ≈75 wt% , ≈20 wt% perovskite , and ≈5 wt% rock salt CoO. Argon-annealed SFC2 contains brownmillerite Sr2(Fe1−x Co x )2O5 and rock salt CoO. Dense SFC2 membranes were able to withstand large pO2 gradients and retain mechanical strength. A 2.9-mm-thick disk membrane was tested in a gas-tight electrochemical cell at 900°C; an oxygen permeation flux rate ≈2.5 cm3(STP)·cm−2·min−1 was measured. A dense thin-wall tubular membrane of 0.75-mm thickness was tested in a methane conversion reactor for over 1,000 h. At 950°C, the oxygen permeation flux rate was ≈10 cm3(STP)·cm−2·min−1 when the SFC2 thin-wall membrane was exposed with one side to air and the other side to 80% methane balanced with inert gas. Results from these two independent experiments agreed well. The SFC2 material is a good candidate as dense ceramic membranes for oxygen separation from air or for use in methane conversion reactors.  相似文献   

6.
Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:
where and represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.  相似文献   

7.
This work reports on the removal of organic matter and nitrogen in a radial-flow aerobic-anoxic immobilized biomass (RAIB) reactor fed with domestic sewage pretreated in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Polyurethane foam was used as support material for biomass attachment in both reactors. In batch experiments, a first-order kinetic model with residual concentration represented the organic matter removal rate, whereas nitrogen conversion followed a pseudo-first-order reaction in series model, with kinetic constants k 1 (ammonium to nitrite) and k 2 (nitrite to nitrate) of 0.25 and 6.62 h−1, respectively. The RAIB reactor was operated in continuous-flow mode and changes in the airflow rate and hydraulic retention time were found to interfere in the apparent kinetic constants to the nitritation (k 1) and nitratation (k 2). Nitrification and denitrification were achieved in the partially aerated RAIB reactor operating with hydraulic retention times of 3.3 h and 2.7 h in the aerobic and anoxic zones, respectively. Ethanol was added in the anoxic zone of the reactor to promote denitrification. The effluent flow of the RAIB reactor presented a COD of 52 mg l−1, and concentrations of 2 mg , 1.24 mg and 3.46 mg .  相似文献   

8.
Electrochemical oxidation of thiocyanate (SCN) on platinum electrode in the sulfuric acid medium was studied using cyclic voltammetry, in situ UV-visible absorption measurement, rotating ring-disc electrode voltammetry, and electrical impedance spectroscopy. Two oxidation processes are involved in the electrochemical oxidation of SCN in sulfuric acid medium. The adsorbed SCN undergoes oxidation at potential values higher than 0.900 V versus saturated calomel electrode (SCE). Trithiocyanate, , is formed as a relatively stable product during the first oxidation process. The potential range of formation increases with increase in concentration of SCN, and it is exclusively produced in the potential range of 0.550 to 1.40 V versus SCE with 1.0 M NH4SCN solution. The second oxidation process does not produce any stable product, and the products of second oxidation passivate the electrode surface.  相似文献   

9.
Electrochemical impedance spectroscopy has been applied for investigation of the hydrogen evolution kinetics at the electrochemically polished Bi(001) plane, and the complicated reaction mechanism (slow adsorption and charge-transfer steps) has been established. The charge-transfer resistance and adsorption capacitance values depend noticeably on the electrode potential applied. The adsorption resistance is maximal in the region of electrode potential E min = −0.65 V vs. (Hg|Hg2Cl2|4 M KCl), where the minimal values of constant phase element (CPE) coefficient Q have been calculated. The fractional exponent α CPE values of the CPE close to unity (α CPE ≥ 0.94 and weakly dependent on the electrode potential and pH of solution () have been obtained, indicating the weak deviation of Bi(001)|HClO4 + H2O interface from the ideally flat capacitive electrode. Q differs only very slightly from double-layer capacitance C dl values in the whole region of potentials and , investigated.  相似文献   

10.
This article describes novel optical functionalities such as photomagnetic effects and magnetization-induced second harmonic generation (MSHG) in several cyano-bridged metal assemblies. Single crystal- and film-types of a cyano-bridged Cu–Mo bimetallic assembly, , were electrochemically prepared. When this compound was irradiated with light, spontaneous magnetization with a Curie temperature (T C) of 23 K was observed. Electrochemically prepared FeII[CrIII(CN)6]2/3·5H2O thin film, which was a ferromagnet with T C=21 K, showed photoreduced magnetization. This photomagnetism is due to the change of ferromagnetic coupling between FeII and CrIII. MSHG was observed in CsICoII[CrIII(CN)6]·0.5H2O. This -type Prussian blue analog-based magnet is proven to be a piezoelectric ferromagnet, i.e., condensed matter with both piezoelectric and ferromagnetism. This MSHG is due to the coupling between a piezoelectric structure of and ferromagnetism with a T C of 46 K.
Shin-ichi OhkoshiEmail:
  相似文献   

11.
The present paper discusses the oxygen transport properties, oxygen stoichiometry, phase stability, and chemical and mechanical stability of the perovskites (BSCF) and (SCF) for air separation applications. The low oxygen conductive brownmillerite phase in SCF is characterized using in-situ neutron diffraction, thermographic analysis and temperature programmed desorption but this phase is not present for BSCF under the conditions studied. Although both materials show oxygen fluxes well above 10 ml/cm2·min at T=1,273 K and pO2=1 bar for self-supporting, 200 μm-thick membranes, BSCF is preferred as a membrane material due to its phase stability. However, BSCF’s long-term stable performance remains to be confirmed. The deviation from ideal oxygen stoichiometry for both materials is high: δ>0.6. The thermal expansion coefficients of BSCF and SCF are 24×10−6 and 30×10−6 K−1, respectively, as determined from neutron diffraction data. The phenomenon of kinetic demixing has been observed at pO2<10−5 bar, resulting in roughening of the surface and enrichment with alkaline earth metals. Stress–strain curves were determined and indicated creep behavior that induces undesired ductility at T=1,073 K for SCF. Remedies for mechanical and chemical instabilities are discussed.  相似文献   

12.
Supramolecular pillared oxides were prepared through the intercalation of M2+ cations into a MnO2 host matrix by the method of ion exchange between the precursor δ-K x MnO2 and the corresponding guest. The materials M-MnO2 crystallize in the hexagonal system, the same structure as the precursor, with a larger interlamellar spacing. In the case of ZrO-MnO2, extended X-ray absorption fine structure (EXAFS) determination indicates that the Zr atom locates between the MnO2 layers forming a stable structure. Compared with the precursor, the cycling property of M-MnO2 was improved distinctly, while the capacity decreased to some degree due to the strong interaction between pillars and the host matrix. Among these pillared materials, ZrO-MnO2 has an advanced reversible capacity of 161.5 mAh·g−1 and improved cycling behavior compared with the precursor.  相似文献   

13.
The processes of nickel surface anodic oxidation taking place within the range of potentials preceding oxygen evolution reaction (OER) in the solutions of 1 M KOH, 0.5 M K2SO4, and 0.5 M H2SO4 have been analyzed in the present paper. Metallic nickel, thermally oxidized nickel, and black nickel coating were used as Ni electrodes. The methods of cyclic voltammetry and X-ray photoelectron spectroscopy were employed. The study was undertaken with a view to find the evidence of peroxide-type nickel surface compounds formation in the course of OER on the Ni electrode surface. On the basis of experimental results and literature data, it has been suggested that in alkaline solution at E ≈ 1.5 V (RHE) reversible electrochemical formation of Ni(IV) peroxide takes place according to the reaction as follows: This reaction accounts for both the underpotential (with respect to ) formation of O2 from NiOO2 peroxide and also small experimental values of dE/dlgi slope (<60 mV) at low anodic current densities, which are characteristic for the two-electron transfer process. It has been inferred that the composition of the γ-NiOOH phase, indicated in the Bode and revised Pourbaix diagrams, should be ∼5/6 NiOOH + ∼1/6 NiOO2. The schemes demonstrating potential-dependent transitions between Ni surface oxygen compounds are presented, and the electrocatalytic mechanisms of OER in alkaline, acid, and neutral medium have been proposed.  相似文献   

14.
Perovskite-type oxides with A, A′=La, Ba, Sr; B, B′=Mn, Fe, Co were investigated by means of thermal analysis, solid electrolyte cells, and X-ray diffraction. Partial molar thermodynamic quantities are determined and their relations with O/M stoichiometry, unit cell volume, and phase stability were studied. The absolute values of partial molar enthalpies of perovskite-type oxides increase with increasing O/M stoichiometries and with decreasing unit cell volumes of the cubic perovskite-type structure, corresponding to higher chemical stabilities. The substitution of Ba for La, Ba for Sr, Co for Fe, and Fe for Mn lead to increase in unit cell volumes and decrease in absolute values of ΔH 0. The ΔH 0 values of the cobaltites/ferrites range from −33.5 kJ/mol for SrCo0.8Fe0.2O3−x to −72.5 kJ/mol for La0.2Sr0.8Co0.6Fe0.4O3−x, and of the manganates up to −132 kJ/mol for Ca0.5Sr0.5Mn0.8Fe0.2O3−x .  相似文献   

15.
A novel thiocyanate (SCN)-selective PVC membrane electrode based on a zinc-phthalocyanine (ZnPc) complex as neutral carrier is described. The membrane electrode containing ZnPc with 5.1% (w/w) ionophore, 29.2% (w/w) PVC, and 65.7% (w/w) 2-nitrophenyl octyl ether (o-NPOE) as plasticizer displayed an anti-Hofmeister selectivity sequence , and exhibited near-Nernstian potential response to thiocyanate ranging from about 1.0×10−1 to 1.0×10−6 mol L−1 with a detection limit of 7.5×10−7 mol L−1 and a slope of 58.1±0.5 mV per decade in pH 3.0 phosphate buffer solution at 25 °C. This preferential response is believed to be associated with the unique coordination between the central metal of the carrier and thiocyanate.   相似文献   

16.
The electropolymerization of aniline on a palladized aluminum electrode (Pd/Al) by potentiodynamic as well as potentiostatic methods is described. The effect of the monomer concentration between 0.01 and 0.4 M on the polyaniline (PANI) formation and its growth on the Pd/Al electrode was investigated and a suitable concentration of 0.2 M is suggested. A similar study was carried out to investigate the effect of sulfuric acid concentration and 0.1 M sulfuric acid was chosen. A study on the influence of electropalladization time on the polymer formation and its growth suggested a convenient time of 40 s. The stability of the PANI film on the Pd/Al electrode was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1–0.7 V, the first-order degradation rate constant, k, of PANI film varies between 1×10−6 and 2×10−5 s−1, and a relatively low slope (i.e., 2.2) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the PANI-deposited Pd/Al electrode is discussed. The electrocatalytic activity of the PANI-deposited Pd/Al electrode against para-benzoquinone/hydroquinone (Q/H2Q) and redox systems were investigated and on the basis of of the corresponding cyclic voltammograms and the redox systems were identified as the reversible and quasi-reversible systems, respectively.  相似文献   

17.
Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with H2L1 and H2L2, respectively, in acetonitrile solution. Here, [L1]2− and [L2]2− are the deprotonated forms of N,N-bis(2-hydroxybenzyl)-N′,N′-dimethylethylenediamine and N,N-bis(2-hydroxybenzyl)-2-picolylamine, respectively. The crystal structures of and were determined by x-ray crystallography. In , each cobalt atom has distorted trigonal bipyramid geometry, while in , each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in . The magnetic characterization for is in agreement with the presence of Co(II) and Co(III) centers. Graphical Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with dianionic N2O2 coordinating ligands. In complex 1, each cobalt atom has distorted trigonal bipyramid geometry, while in complex 2, each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in complex 1. The magnetic characterization for complex 2 is in agreement with the presence of Co(II) and Co(III) centers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Motivated by recent work on the Ruddlesden–Popper material, which was shown to be a superior oxide-ion conductor than conventional solid-oxide fuel cell cathode perovskite materials, we undertook A- and B-site doping studies of the Ruddlesden–Popper nickelate series in an attempt to identify other candidates for cathode application. In this paper, we summarize our most significant results for the and systems and more recently, the higher-order Ruddlesden–Popper phases La n+1Ni n O3n+1 (n=2 and 3), which show greater promise as cathode materials than the n=1 compositions.  相似文献   

19.
The kinetics of hexacyanoferrate(III) reduction by hydrogen peroxide in strongly alkaline media leading to hexacyanoferrate(II) ion have been studied spectrophotometrically within the wavelength range 300–500 nm. The reaction obeys a simple pseudo-first-order rate expression under the applied conditions, namely, a large excess of the reductant and OH anion concentrations, and a low oxidant concentration. The linear dependences of the pseudo-first-order rate constant on OH and H2O2 concentrations are consistent with the rate law of the form: where and are the second- and the pseudo-third-order rate constants for the electron transfer from HO2 and O2 2− to [Fe(CN)6]3−, respectively. The apparent activation parameters determined at 0.4 M NaOH are as follows: ΔH # = (18.0 ± 1.0) kJ mol−1 and ΔS # = (−155 ± 3.5) J K−1 mol−1. The possible mechanism of the reaction is discussed.  相似文献   

20.
The influence of the electronic properties of oxidized Nb surfaces on the electrodeposition of metals (Me=Co, Cu, Ag) with different equilibrium potentials is studied by conventional electrochemical techniques and atomic force microscopy. The results show that relatively thin anodic Nb2O5 films (thickness <11 nm) present a frequency-dependent n-type semiconductor behavior, which can be described by the theory of amorphous semiconductor. The Schottky barrier, formed at the a-Nb2O5/electrolyte interface, affects the deposition rate of metals with equilibrium potentials more positive than the flat band potential Then, the dependence of density of states on the oxide thickness and anodization conditions leads to different extents of the band bending, affecting directly the rate of electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号