首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FLYCHK is a straightforward, rapid tool to provide ionization and population distributions of plasmas in zero dimension with accuracy sufficient for most initial estimates and in many cases is applicable for more sophisticated analysis. FLYCHK solves rate equations for level population distributions by considering collisional and radiative atomic processes. The code is designed to be straightforward to use and yet is general enough to apply for most laboratory plasmas. Further, it can be applied for low-to-high Z ions and in either steady-state or time-dependent situations. Plasmas with arbitrary electron energy distributions, single or multiple electron temperatures can be studied as well as radiation-driven plasmas. To achieve this versatility and accuracy in a code that provides rapid response we employ schematic atomic structures, scaled hydrogenic cross-sections and read-in tables. It also employs the jj configuration averaged atomic states and oscillator strengths calculated using the Dirac–Hartree–Slater model for spectrum synthesis. Numerous experimental and calculational comparisons performed in recent years show that FLYCHK provides meaningful estimates of ionization distributions, well within a charge state for most laboratory applications.  相似文献   

2.
In a previous paper (Transp. Porous Media,55(1): 47–70), algorithms are given for computing the analytical solution to the three-phase Riemann problem. Application of those algorithms requires that the wave configuration is known. The purpose of this note is to provide a procedure to determine the wave structure for any initial and injected saturation states.  相似文献   

3.
We consider the gas state behind a shock wave front in air with a velocity v10 km/sec. Nonequilibrium ionization and radiative transport are taken into account. We take into consideration the real air spectrum — the numerous lines, bands, and continuua. Account for the radiation leads to an integrodifferential system of equations for which a solution method is developed. As a result we obtain the gas parameter profiles behind the shock wave, which are affected by the relaxation processes and radiative cooling. The calculations were made for v=10–16 km/sec and a pressure p=10–5–10–2 atm ahead of the front.In order to obtain realistic results, we consider only the gas layer bounded by the shock and a surface parallel to it. It is assumed that the gas bounded by these planes is not irradiated from without. In this formulation still another defining parameter appears—the distancel between the planes. The calculations were made forl=1–100 cm.  相似文献   

4.
Surface morphologies of thin dielectric films deposited on gallium arsenide substrates are studied by atomic force microscopy (AFM). The quasi-periodic mesostructure with a corrugated configuration is found to form during the deposition process. A special dopant and thin interlayer at the film–substrate interface are used to decrease the surface roughness. The corrugated SixNyOz–SiO2 film surface disappears by introducing Se atoms into the subsurface layer of the semiconductor. The root-mean-square roughness and the fractal dimension techniques are used for the numerical characterization of the surface morphologies of thin insulator films.  相似文献   

5.
Various beams lying on the elastic half-space and subjected to a harmonic load are analyzed by a double numerical integration in wavenumber domain. The compliances of the beam–soil systems are presented for a wide frequency range and for a number of realistic parameter sets. Generally, the soil stiffness G has a strong influence on the low-frequency beam compliance whereas the beam parameters EI and m are more important for the high-frequency compliance. An important parameter is the elastic length l=(EI/G)1/4 of the beam–soil system. Around the corresponding frequency ωl=vS/l, the wave velocity of the combined beam–soil system changes from the Rayleigh wave vRvS to the bending wave velocity vB and the combined beam–soil wave has typically a strong damping. The interaction frequency ωl is found not far from the characteristic frequency ω0=(G/m)1/2 where an amplification compared to the static compliance is observed for special parameter constellations. In contrast, real foundation beams show no resonance effects as they are highly damped by the radiation into the soil. At medium and high frequencies, asymptotes for the compliance of the beam–soil system are found, u/P(ρvPaiω)−3/4 in case of the dominating damping and u/P(−mω2)−3/4 for high frequencies. The low-frequency compliance of the coupled beam–soil system can be approximated by u/P1/Gl, but it also depends weakly on the width a of the foundation. All numerical results of different beam–soil systems are evaluated to yield a unique relation u/P0=f(a/l). The integral transform method is also applied to ballasted and slab tracks of railway lines, showing the influence of train speed on the deformation of the track beam. The presented results of infinite beams on half-space are compared with results of finite beams and with infinite beams on a Winkler support. Approximating Winkler parameters are given for realistic foundation-soil systems which are useful when vehicle-track interaction is analyzed for the prediction of railway induced vibration.  相似文献   

6.
Three-dimensional studies on bicomponent extrusion   总被引:1,自引:0,他引:1  
The present work is concerned with the mathematical modelling and numerical simulation of three-dimensional (3-D) bicomponent extrusion. The objective is to provide an understanding of the flow phenomena involved and to investigate their impact on the free surface shape and interface configuration of the extruded article. A finite element algorithm for the 3-D numerical simulation of bicomponent stratified free surface flows is described. The presence of multiple free surfaces (layer interface and external free surfaces) requires special free surface update schemes. The pressure and viscous stress discontinuity due to viscosity mismatch at the interface between the two stratified components is handled with both a double node (u–v–w–P 1 –P 2 –h 1 –h 2) formulation and a penalty function (u–v–w–P–h 1 –h 2) formulation.The experimentally observed tendency of the less viscous layer to encapsulate the more viscous layer in stratified bicomponent flows of side-by-side configuration is established with the aid of a fully 3-D analysis in agreement with experimental evidence. The direction and degree of encapsulation depend directly on the viscosity ratio of the two melts. For shear thinning melts exhibiting a viscosity crossover point, it is demonstrated that interface curvature reversal may occur if the shearing level is such that the crossover point is exceeded. Extrudate bending and distortion of the bicomponent system because of the viscosity mismatch is shown. For flows in a sheath-core configuration it is shown that the viscosity ratio may have a severe effect on the swelling ratio of the bicomponent system.Modelling of the die section showed that the boundary condition imposed at the fluid/fluid/wall contact point is critical to the accuracy of the overall solution.  相似文献   

7.
The effect of thermal diffusion on an unbounded vertically stratified thermohaline fluid with compensating horizontal thermal and salinity gradients (i.e., with no horizontal density gradient) is investigated in this analysis. It is observed that the maximum growth rate of instability, the slope of the wave front and the wave number depend on the Soret parameter, S. For 1+S= –1, the system is stable for any value of the horizontal gradient where is the ratio of mass diffusivity to thermal diffusivity. For 1+S<0, there is convective instability when both vertical gradients are stable even in the absence of the horizontal gradient. When 1+S> –1, the slopes of the wave fronts tilt such that there is a diffusive set-up when stationary convection sets in and finger formation when there is oscillatory convection.  相似文献   

8.
In this paper, the online Weather Research and Forecasting and Chemistry (WRF/CHEM) model, coupled with urban canopy (UCM) and biogenic-emission models, is used to explore impacts of urban expansion on secondary organic aerosols (SOA) formation. Two scenarios of urban maps are used in WRF/CHEM to represent early 1990s (pre-urbanization) and current urban distribution in the Pearl River Delta (PRD). Month-long simulation results using the above land-use scenarios for March 2001 show: (1) urbanization can increase monthly averaged temperatures by about 0.63 ℃, decrease monthly averaged 10-m wind speeds by 38%, increase monthly averaged boundary-layer depths by 80 m, and decrease monthly aver- aged water mixing ratio by 0.2g/kg. (2) Changes in meteorological conditions can result in detectable concentration changes of NOx, VOC, O3 and NO3 radicals. Urbanization decreases surface NOx and VOC concentrations by a maximum of 4 ppbv and 1.5 ppbv, respectively. Surface O3 and NO3 radical concentrations over major cities increase by about 2-4 ppbv and 4-12 pptv, respectively; areas with increasing O3 and NO3 radical concentrations generally coincide with the areas of temperature increase and wind speed reduction where NOx and VOC decrease. (3) Urbanization can induce 9% increase of SOA in Foshan, Zhongshan and west Guangzhou and 3% decrease in Shenzhen and Dongguan. Over PRD major cities, SOA from Aitken mode reduces by 30% but with more than 70% SOA from accumulate mode. Urbanization has stronger influence on SOA formation from Aitken mode. (4) Over the PRD, 55-65% SOA comes from aromatics precursors. Urbanization has strongest influence on aromatics precursors to produce SOA (14% increase), while there is less influence on alkane precursors. Alkene precursors have negative contribution to SOA formation under urbanization situation.  相似文献   

9.
Linear control semigroupsL=Gl(d,R) are associated with semilinear control systems of the form whereA:R m gl(d,R) is continuous in some open set containingU. The semigroupL then corresponds to the solutions with piecewise constant controls, i.e., L acts in a natural way onR d {0}, on the sphereS d–1, and on the projective spaceP d–1. Under the assumption that the group generated byL in Gl(d,R) acts transitively onP d–1, we analyze the control structure of the action ofL onP d–1: We characterize the sets inP d–1, where the system is controllable (the control sets) using perturbation theory of eigenvalues and (generalized) eigenspaces of the matrices g L For nonlinear control systems on finitedimensional manifoldsM, we study the linearization on the tangent bundleTM and the projective bundleP M via the theory of Morse decompositions, to obtain a characterization of the chain-recurrent components of the control flow onU×PM. These components correspond uniquely to the chain control sets onP M, and they induce a subbundle decomposition ofU×TM. These results are used to characterize the chain control sets ofL acting onP d–1 and to compare the control sets and chain control sets.Research supported in part by NSF Grant DMS 8813976 and DFG Grant Co 124/6-1.  相似文献   

10.
The initial boundary-value linear stability problem for small localised axisymmetric disturbances in a homogeneous elastic wave guide, with the free upper surface and the lower surface being rigidly attached to a half-space, is formally solved by applying the Laplace transform in time and the Hankel transforms of zero and first orders in space. An asymptotic evaluation of the solution, expressed as a sum of inverse Laplace-Hankel integrals, is carried out by using the approach of the mathematical formalism of absolute and convective instabilities. It is shown that the dispersion-relation function of the problem D0 (κ, ω), where the Hankel parameter κ is substituted by a wave number (and the Fourier parameter) κ, coincides with the dispersion-relation function D0 (k, ω) for two-dimensional (2-D) disturbances in a homogeneous wave guide, where ω is the frequency (and the Laplace parameter) in both cases. An analysis for localised 2-D disturbances in a homogeneous wave guide is then applied. We obtain asymptotic expressions for wave packets, triggered by axisymmetric perturbations localised in space and finite in time, as well as for responses to axisymmetric sources localised in space, with the time dependence satisfying eiω0t + O(e−εt) for t → ∞, where Im ω0 = 0, ε > 0, and t denotes time, i.e. for signalling with frequency ω0. We demonstrate that, for certain combinations of physical parameters, axisymmetric wave packets with an algebraic temporal decay and axisymmetric signalling with an algebraic temporal growth, as √t, i.e., axisymmetric temporal resonances, are present in a neutrally stable homogeneous wave guide. The set of physically relevant wave guides having axisymmetric resonances is shown to be fairly wide. Furthermore, since an axisymmetric part of any source is L2-orthogonal to its non-axisymmetric part, a 3-D signalling with a non-vanishing axisymmetric component at an axisymmetric resonant frequency will generally grow algebraically in time. These results support our hypothesis concerning a possible resonant triggering mechanism of certain earthquakes, see Brevdo, 1998, J. Elasticity, 49, 201–237.  相似文献   

11.
The structure of time-dependent resonances arising in themethod of time-dependent normal forms (TDNF) for one andtwo-degrees-of-freedom nonlinear systems with time-periodic coefficientsis investigated. For this purpose, the Liapunov–Floquet (L–F)transformation is employed to transform the periodic variationalequations into an equivalent form in which the linear system matrix istime-invariant. Both quadratic and cubic nonlinearities are investigatedand the associated normal forms are presented. Also, higher-orderresonances for the single-degree-of-freedom case are discussed. It isdemonstrated that resonances occur when the values of the Floquet multipliers result in MT-periodic (M = 1, 2,...) solutions. The discussion is limited to the Hamiltonian case (which encompasses allpossible resonances for one-degree-of-freedom). Furthermore, it is alsoshown how a recent symbolic algorithm for computing stability andbifurcation boundaries for time-periodic systems may also be employed tocompute the time-dependent resonance sets of zero measure in theparameter space. Unlike classical asymptotic techniques, this method isfree from any small parameter restriction on the time-periodic term inthe computation of the resonance sets. Two illustrative examples (oneand two-degrees-of-freedom) are included.  相似文献   

12.
This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air–water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (ReL) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000–10000 and 0.003–0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air–water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent ReL and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived.  相似文献   

13.
Results of physical and numerical experiments on investigating the effect of the depth of immersion of a two-dimensional obstacle with a square cross section into a developed turbulent boundary layer on the length of the separated flow region are presented. The numerical simulation is based on solving averaged Navier–Stokes equations with the use of the k– model of turbulence. The near-wall flow is visualized in the experiments, and the fields of mean and fluctuating velocities are measured. Flow regions where the results of numerical simulation agree with experimental data are determined. It is shown that the length of the recirculation flow region in the near wake increases with decreasing depth of immersion of the two-dimensional obstacle into the turbulent boundary layer.  相似文献   

14.
The stability curves for traveling disturbances in rotating-disk flow are computed using the sixth-order system of incompressible linear stability equations. It is found that the neutral curve has two minima for disturbances with positive frequencies as found earlier by Malik (1986) for stationary disturbances. The upper branch minimum occurs at =–2.9, R=283.6 while the lower branch minimum occurs at =7.9, R=64.46 where R is the Reynolds number. There exists a critical angle of approximately –35.34° (which is about 15° from the direction of maximum wall shear) below which all the waves are linearly damped. The results also show that at high frequencies the wave number for lower branch neutral disturbances varies with Reynolds number like R –1 while for stationary waves it behaves like R –1/2. The eigenfunction distribution suggests that the structure of the nonstationary high-frequency lower branch neutral disturbances are different from the structure of the viscous stationary disturbances.This work was sponsored under NASA Contract NAS1-18240.  相似文献   

15.
A micro–macro approach based on combining the Brownian configuration fields (BCF) method [M.A. Hulsen, A.P.G. van Heel, B.H.A.A. van den Brule, Simulation of viscoelastic flow using Brownian configuration fields, J. Non-Newtonian Fluid Mech. 70 (1997) 79–101] with an Arbitrary Lagrangian–Eulerian (ALE) Galerkin finite element method, using elliptic mesh generation equations coupled with time-dependent conservation equations, is applied to study slot coating flows of polymer solutions. The polymer molecules are represented by dumbbells with both linear and non-linear springs; hydrodynamic interactions between beads are incorporated. Calculations with infinitely extensible (Hookean) and pre-averaged finitely extensible (FENE-P) dumbbell models are performed and compared with equivalent closed-form macroscopic models in a conformation tensor based formulation [M. Pasquali, L.E. Scriven, Free surface flows of polymer solutions with models based on the conformation tensor, J. Non-Newtonian Fluid Mech. 108 (2002) 363–409]. The BCF equation for linear dumbbell models is solved using a fully implicit time integration scheme which is found to be more stable than the explicit Euler scheme used previously to compute complex flows. We find excellent agreement between the results of the BCF based formulation and the macroscopic conformation tensor based formulation. The computations using the BCF approach are stable at much higher Weissenberg numbers, (where λ is the characteristic relaxation time of polymer, and is the characteristic rate of strain) compared to the purely macroscopic conformation tensor based approach, which fail beyond a maximum Wi. A novel computational algorithm is introduced to compute complex flows with non-linear microscopic constitutive models (i.e. non-linear FENE dumbbells and dumbbells with hydrodynamic interactions) for which no closed-form constitutive equations exist. This algorithm is fast and computationally efficient when compared to both an explicit scheme and a fully implicit scheme involving the solution of the non-linear equations with Newton’s method for each configuration field.  相似文献   

16.
In order to predict the propagation of an impurity and water quality on a shelf it is necessary to know the water mass dynamics and the water exchange. However, the hydrodyamics of the shelf zone differ considerably from those of the open expanses of seas and lakes owing to the steepness of the bottom, the complex structure of the shoreline, the major role of wind waves, and their breaking [1]. In [2, 3] the importance of surface waves and their breaking for inshore flows was demonstrated and the equations of hydrodynamics, averaged over the depth, were derived. For regions of the shelf remote from the shoreline it is also necessary to take into account the interaction of waves with the bottom and with essentially three-dimensional flows. In this note the equations of hydrodynamics are derived for wind wave flows averaged over the wave period in the threedimensional formulation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1-, pp. 174–176, January–February, 1987.  相似文献   

17.
Experiments were conducted with a Hartmann–Sprenger tube (H–S) to study the effect of different parameters on the frequency and amplitude of acoustic fluctuations excited when the H–S underexpanded jet impinges on an in-line cavity. Time averaged shadowgraphs were acquired to study the flow field between the underexpanded jet and the cavity for varying parameters of the H–S tube. It was observed that the H–S tube primarily excited two different modes. The first mode corresponds to the jet regurgitant mode (JRG) where the frequency of oscillations scales as a function of the cavity depth. The other mode is screech where an oscillating shock is formed in front of the cavity. The screech mode excites a higher acoustic frequency than the JRG and it is observed to be a strong function of the pressure ratio R, and distance between the jet and the cavity X. At a fixed cavity length, varying standoff distance X could excite either the JRG or screech. At very low standoff distances (X/Dj<0.8), the current study indicates that there is a mode switch from screech to JRG. A cavity to jet diameter, Dc/Dj>1 was found to sustain JRG over a wide range of X. Diameter ratios Dc/Dj<1 sustained high frequency screech modes in a wide range of H–S tube parameters.  相似文献   

18.
The vertical transport of mass, energy andn unreacting chemical species in a two-phase reservoir is analysed when capillarity can be ignored. This results in a singular system of equations, comprising mixed parabolic and hyperbolic equations. We derive a natural factorisation of these equations into diffusive and wave equations. If diffusive or conductive effects are important for onlyN–1 of the chemical species, then there areN parabolic equations, andn+2–N wave equations. Each wave equation allows for the corresponding variable to be discontinous, or equivalently, for shock propagation to occur. Steady flows were shown to allow for more than two (vapour and liquid dominated) saturations for a given mass, energy and chemical flux, but when thermal conduction and chemical diffusion are unimportant, only the vapour and liquid dominated cases appear likely to occur. For infinitesimal shocks there is a continuous flux vector for each diffusive variable. The existence of these continuous flux vectors results in significant simplifications of the corresponding wave equations. It remains an open question if continuous flux vectors exist for finite shocks. General expressions are obtained for the diffusion and wave matrices, which require no knowledge of continuous flux vectors.  相似文献   

19.
The vibrational temperature of the antisymmetrical type of vibrations (v 3) of the CO2 molecule at the exit of a supersonic nozzle is measured in the present work using the method of recording the infrared emission. Freezing in of thev 3-type vibrations was observed during the flow of undiluted carbon dioxide in a nozzle. In this case the vibrational temperature T3 considerably exceeded the translational temperature. On the basis of a comparison of the experimental results with calculation it can be concluded that vibrational deactivation of CO2 molecules occurs three to five times faster than the excitation of the vibrations during heating in a shock wave. All the experiments were conducted under the following conditions: maximum expansion of gas in nozzle A/A* = 115, temperature range 1900–2400 °K, pressure range 1–17.5 atm.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 32–40, November–December, 1973.The authors are grateful to U. G. Pirumov and É. A. Ashratov for the calculation of the nozzle profile and the distribution of streamlines as well as for a discussion of the results.  相似文献   

20.
We investigate numerically the stability of periodic traveling wave solutions (cnoidal waves) for a generalized Benney–Luke equation. By using a high-accurate Fourier spectral method, we find different kinds of evolution depending on the period of the perturbation. A cnoidal wave solution with period T is orbitally stable with regard to perturbations having the same period T, within certain range of wave velocities. This is a fact proved recently by Angulo and Quintero [Existence and orbital stability of cnoidal waves for a 1D boussinesq equation, International Journal of Mathematics and Mathematical Sciences (2007), in press, doi:10.1155/2007/52020] and our numerical experiments are consistent with their theory. In the present work we show numerically that cnoidal waves with period T become unstable when perturbed by small amplitude disturbances whose period is an integer multiple of T. Particularly, if the period of the perturbation is 2T, the evolution of the deviation of the solution from the orbit of the cnoidal wave is found to be approximately a time-periodic function. In other cases, the numerical experiments indicate a non-periodic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号