首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Pulsed quantum cascade lasers (QCLs) with 6.2-μm and 8-μm wavelengths and a differential photoacoustic (PA) detector were used to measure concentrations of NO2 and N2O in the sub-ppmv range at ambient pressure. The QCL temperatures were tuned between -40 °C and 30 °C. Good agreement was found between measured PA vibrational spectra and simulated HITRAN spectra of both nitrogen oxides. The PA signals showed a linear dependence on the concentration in the investigated 0.5–50 ppmv region in both cases. The results for N2O are compared with a PA measurement of N2O at 2.9 μm using a grazing-incidence optical parametric oscillator. PACS 42.62.Fi; 82.80.Kq; 82.80.Gk; 92.60.Sz  相似文献   

2.
We have theoretically investigated the thermal characteristics of double-channel ridge–waveguide InGaAs/InAlAs/InP quantum cascade lasers (QCLs) using a two-dimensional heat dissipation model. The temperature distribution, heat flow, and thermal conductance (G th) of QCLs were obtained through the thermal simulation. A thick electroplated Au around the laser ridges helps to improve the heat dissipation from devices, being good enough to substitute the buried heterostructure (BH) by InP regrowth for epilayer-up bonded lasers. The effects of the device geometry (i.e., ridge width and cavity length) on the G th of QCLs were investigated. With 5 μm thick electroplated Au, the G th is increased with the decrease of ridge width, indicating an improvement from G th=177 W/K⋅cm2 at W=40 μm to G th=301 W/K⋅cm2 at W=9 μm for 2 mm long lasers. For the 9 μm×2 mm epilayer-down bonded laser with 5 μm thick electroplated Au, the use of InP contact layer leads to a further improvement of 13% in G th, and it was totally raised by 45% corresponding to 436 W/K⋅cm2 compared to the epilayer-up bonded laser with InGaAs contact layer. It is found that the epilayer-down bonded 9 μm wide BH laser with InP contact layer leads to the highest G th=449 W/K⋅cm2. The theoretical results were also compared with available obtained experimentally data.  相似文献   

3.
Room temperature (RT) quantum cascade lasers (QCL) are now available even in continuous wave (cw) mode, which is very promising for in situ gas detectors. Ambient air monitoring requires high sensitivity with robust and simple apparatus. For that purpose, a compact photoacoustic setup was combined with two cw QCLs to measure ambient methane and nitrous oxide in the 8 μm range. The first laser had already been used to calibrate the sensitivity of the photoacoustic cell and a detection limit of 3 ppb of CH4 with a 1s integration time per point was demonstrated. In situ monitoring with this laser was difficult because of liquid nitrogen cooling. The second laser is a new RT cw QCL with lower power, which enabled one to reach a detection limit of 34 ppb of methane in flow. The loss in sensitivity is mainly due to the weaker power as photoacoustic signal is proportional to light power. The calibration for methane detection leads to an estimated detection limit of 14 ppb for N2O flux measurements. Various ways of modulation have been tested. The possibility to monitor ambient air CH4 and N2O at ground level with this PA spectrometer was demonstrated in flux with these QCLs. PACS 07.88; 92.60.Sz  相似文献   

4.
The paper reports the pulsed laser-based time-resolved time-dependent Photo-acoustic (PA) spectroscopy of NO2 gas in a specially designed multi mode-Resonant PA Cell which is made of Stainless Steel and has a “Q” value of the order of 79. Furthermore the designed cell allows us to excite some of the longitudinal, radial and azimuthal resonance modes of the photo-acoustic signals simultaneously in a very efficient manner. The presence of many newly excited modes occur at 7050 Hz, 10350 Hz and 14650 Hz frequencies is observed for the first time in NO2 at room temperature. These results are obtained by employing second harmonics i.e. λ=532 nm pulses from Q-switched Nd:YAG laser having 7 ns pulse duration. Some of the new acoustic spectrum lines at higher frequencies are recorded between 0.5–10 ms data acquisition time, which also extends the frequency monitoring range of our system. The study also highlights some of the important aspects such as the decaying behavior of some of these resonant acoustic spectrum lines occur on the expense of others as well as the saturation behavior of some other modes in the NO2 gas sample. The estimated low level detection limit of NO2 buffered in air is of the order of 17.9 ppbV.  相似文献   

5.
A green method for simultaneous extraction and enrichment of flavonoids from Euonymus alatus was developed by ultrasonic-assisted extraction (UAE) and temperature-induced cloud point extraction (TICPE) using PEG-base aqueous solution as the extractant. Based on screening different molecular weights of PEGs, PEG-400/water was used as the extractant, and the effects of key factors on extraction yields of flavonoids were investigated by single-factor experiments and response surface methodology (RSM). The optimum conditions of UAE were as follows: PEG-400 concentration of 16% (w/w), particle size of 80 mesh, solvent-to-material ratio of 60:1, extraction temperature of 90 °C and extraction time of 15 min. The results obtained by validation experiments were consistent with the values predicted by RSM. Temperature-induced formation of the aqueous two-phase system (ATPS) and TICPE process were further investigated by controlling temperature and adding (NH4)2SO4. In the presence of (NH4)2SO4, the ATPS formed at 75 ℃ and pH 3.5 could effectively improve separation and recovery of flavonoids with enrichment factor of above five times. Gallic acid, catechin, dihydromyricetin and ellagic acid in the extract were identified and confirmed by UPLC-Q-TOF-MS and the corresponding standards. The UAE-TICPE coupled to HPLC was successfully applied for extraction and determination of flavonoids in two batches of Euonymus alatus. The extraction yields of catechin, dihydromyricetin and total flavonoids were 0.377–0.684 mg/g, 1.091–1.353 mg/g and 2.612–3.146 mg/g, respectively. Compared to conventional extraction methods, PEG-based UAE integrated with TICPE in one-step procedure exhibited higher extraction efficiency and better extraction selectivity.  相似文献   

6.
AC impedance measurements have been carried out on (NH4)2SO4 single crystals for the temperatures from 300 to 473 K and frequency range between 100 Hz and 4 MHz. The results reveal two distinct relaxation processes in the sample crystal. One is the dipolar relaxation with a peak at frequency slightly higher than 4 × 106 Hz. The other is the charge carrier relaxation at lower frequencies. The frequency dependence of conductivity is described by the relation σ(ω) = n, and n = 1.32 is obtained at temperatures below 413 K. This value drops to 0.2 and then decreases slightly with increasing temperature. The dipolar response of the (NH4)2SO4 single crystal under an ac field is attributed to the reorientation of dipoles. The contribution of charge carriers is increasing substantially with increasing temperature at temperatures above 413 K. The temperature variation of conductivity relaxation peaks follows the Arrhenius relation. The obtained activation energy for migration of the mobile ions for (NH4)2SO4 single crystal was 1.24 eV in the temperature range between 433 and 468 K in this intrinsic region. It is proposed that the NH4+ in the sample crystal has the contribution to the electrical conduction.  相似文献   

7.
A photoacoustic gas sensor using a near-infrared tunable fiber laser and based on wavelength modulation spectroscopy technique is developed. This sensor is capable of quasi-simultaneous quantification of water vapour, acetylene, carbon dioxide, and carbon monoxide (H2O, C2H2, CO and CO2) concentrations in the fire emulator. The feasibility of using this sensor as an early fire detector was demonstrated. The fire warning gases from smoldering paper were measured. The peak concentrations of gases from smoldering paper were 20,300 ppm H2O, 2.1 ppm C2H2, 756 ppm CO, and 1612 ppm CO2 after 400 s.  相似文献   

8.
The main characteristics that a sensor must possess for trace gas detection and pollution monitoring are high sensitivity, high selectivity and the capability to perform in situ measurements. The photacoustic Helmholtz sensor developed in Reims, used in conjunction with powerful Quantum Cascade Lasers (QCLs), fulfils all these requirements. The best cell response is # 1200 V W−1 cm and the corresponding ultimate sensitivity is j 3.3 × 10−10 W cm−11 Hz−11/2. This efficient sensor is used with mid-infrared QCLs from Alpes Lasers to reach the strong fundamental absorption bands of some atmospheric gases. A first cryogenic QCL emitting at 7.9 μm demonstrates the detection of methane in air with a detection limit of 3 ppb. A detection limit of 20 ppb of NO in air is demonstrated using another cryogenic QCL emitting in the 5.4 μm region. Real in-situ measurements can be achieved only with room-temperature QCLs. A room-temperature QCL emitting in the 7.9 μm region demonstrates the simultaneous detection of methane and nitrous oxide in air (17 and 7 ppb detection limit, respectively). All these reliable measurements allow the estimated detection limit for various atmospheric gases using quantum cascade lasers to be obtained. Each gas absorbing in the infrared may be detected at a detection limit in the ppb or low-ppb range.  相似文献   

9.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

10.
P. Shuk  E. Bailey  J. Zosel  U. Guth 《Ionics》2009,15(2):131-138
Mixed potential solid electrolyte CO sensors with sensing electrodes based on composite with various semiconducting oxides were extensively studied in the temperature range 500–650 °C for sensitivity, stability and cross-sensitivity besides CO to other combustion components like CO2, H2O, O2, and SO2. The highest CO sensitivity was found for the CO sensor with composite electrode based on Au/Ga2O3 showing also good reproducibility and stability in hazardous combustion environment. CO sensor response behavior in non equilibrated oxygen containing gas mixtures is mainly determined by the catalytic activity of the measuring electrode and depends strongly on preparation and measuring conditions. Mixed oxides based on doped chromites show only a little sensitivity to CO. CO sensor based on Au/Ga2O3 composite electrodes was showing good CO selectivity in the presence of other combustion gas species and finally was tested in combustion environment at power plant. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

11.
Resonant photoacoustic detection of trace gas with DFB diode laser   总被引:1,自引:0,他引:1  
A resonant photoacoustic detection system based on a low-power distributed feedback diode laser is developed. This sensor has been applied to the detection of acetylene (C2H2) using a specifically designed photoacoustic cell operating on its second longitudinal mode. The minimum detectable limit of about 10 parts-per-million volume (SNR=1) is achieved with an average laser power of 3.5 mW at atmospheric pressure, and an integration time constant of 3 ms; thus, the minimum detectable absorption coefficient normalised by power and bandwidth is 4.0×10−8 W cm−1/√Hz. The optimum operating pressure buffered with N2 is also investigated. The realisation of our system is described and experimental results are compared with different modulation techniques and other results reported in the literature. A number of issues arising from the conventional use of mechanical chopping of the beam can be effectively suppressed in wavelength modulation PA spectroscopy (WM-PAS) and second harmonic detection.  相似文献   

12.
Following our recent work on IR spectra of molecules adsorbed on C60 embedded in LiF and LiCl films, adsorption potentials of CO and N2 adsorbed on LiF (100) and LiCl (100) were calculated. For CO on LiF, a value of 2.0 kcal mol−1 was obtained, close to that calculated for CO adsorbed on a single C60 molecule. The calculated value for CO on LiCl is much higher, 6.8 kcal mol−1. It is therefore concluded that in the case of CO adsorbed on mixed LiF/C60 films, the adsorbed CO molecules are distributed almost evenly on the LiF and C60 single molecules, whereas in the case of CO adsorbed on mixed LiCl/C60 films the salt is greatly preferred as the adsorption site. Adsorption potential calculations for a similar system, N2 on LiF and LiCl, gave values of 1.5 and 4.4 kcal mol−1, respectively. In this case, a much too large value was found for the adsorption potential on the LiCl surface. IR spectra of CO on the two substrates showed two strong absorptions for each of them. With N2 induced spectra were obtained. Spectral shifts have been calculated for the above systems and were all toward higher frequencies, in agreement with experimental findings.  相似文献   

13.
The pure rotational spectrum of β-propiolactone (c-C2H4COO) has been recorded between 7 and 21 GHz using a pulsed jet Fourier transform microwave spectrometer. The resulting ground state spectroscopic constants guided the analysis of the rotationally-resolved infrared spectra of two bands that were collected using the far infrared beamline at the Canadian Light Source synchrotron. The observed modes correspond to motions best described as ring deformation (ν12) at 747.2 cm−1 and CO ring stretching (ν8) at 1095.4 cm−1. A global fit of 4430 a- and b-type transitions from the microwave spectrum and the two infrared bands provided an accurate set of ground state and excited state spectroscopic parameters. To complement the experimental results, the harmonic and anharmonic vibrational frequencies of all 21 infrared active modes of β-propiolactone have been calculated using the DFT B3LYP method (6-311+G(d,p), 6-311++G(2d,3p) basis sets).  相似文献   

14.
Simultaneous direct irradiation with microwaves and ultrasound was used to determine total Kjeldahl nitrogen. The method involves chemical digestion in two steps, mineralization with sulfuric acid and oxidation with H2O2. The most influential variables for the microwave/ultrasound (MW/US)-assisted digestion were optimized using tryptophan as the model substance. The optimum conditions were: H2SO4 volume, 10 mL; H2O2 volume, 5 mL; weight of sample, 0.05 g; MW power, 500 W; US power, 50 W; digestion time, 7 min (i.e., 5 min mineralization and 2 min oxidation). A modification of the classical Kjeldahl (Hach) method and an US-assisted digestion method were used for comparison. The latter was also optimized; the optimum conditions were: H2SO4 volume, 10 mL; H2O2 volume, 5 mL; sonication time with H2SO4, 15 min; sonication time with H2O2,10 min; US power, 50 W; weight of sample, 0.05 g. Five pure amino acids and two certified reference materials (NIST standard reference materials 1547 (peach leaves), and soil, NCS DC 73322) were analyzed to assess the accuracy of our new MW/US-assisted digestion method, that was successfully applied to five real samples. The significant reduction in digestion time (being 30 min and 25 min for classical Kjeldahl and US-assisted digestion methods, respectively) and consumption of reagents show that simultaneous and direct MW/US irradiation is a powerful and promising tool for low-pressure digestion of solid and liquid samples.  相似文献   

15.
Tao L  Sun K  Miller DJ  Khan MA  Zondlo MA 《Optics letters》2012,37(8):1358-1360
We report the characteristics of current induced frequency modulation (FM) for two continuous-wave quantum cascade lasers (QCLs) at 9.06 μm. Both the frequency tuning rate and the phase shift between intensity modulation and FM are measured at different modulation frequencies from 10 Hz to 200 kHz. The frequency tuning rate of the QCLs depends on both the modulation frequency and amplitude. The tested QCL has been used to detect ambient water vapor with wavelength modulation spectroscopy for validation with a numerical model.  相似文献   

16.
The role of the Cu(II) in the catalytic oxidation of CO over Cu/SnO2 with low Cu(II) content was studied by continuous wave EPR, electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectroscopes. Three methods were employed for introducing the copper: (i) by coprecipitation, (ii) impregnation onto SnO2 gel and (iii) impregnation onto calcined SnO2. Two types of Cu(II) species were identified in these calcined Cu/SnO2 materials. Those belonging to the first type, termed B and C, exhibit highly resolved EPR spectra with well defined EPR parameters and are located within the bulk of the oxide. The other group comprises a distribution of surface Cu(II) species with unresolved EPR features and are referred to as S. While the latter were readily reduced by CO the former required long exposures at high temperatures (> 673 K). The specific interactions of the different Cu(II) species with CO were investigated through the determination of the13C hyperfine coupling of enriched13CO. The ESEEM spectra of calcined samples, generated either by coprecipitation or impregnation, show after the adsorption of CO signals at the Larmor frequencies of117, 119Sn and13C and at twice these Larmor frequencies. Although these signals indicate that117, 119Sn and13C are in the close vicinity of Cu(II), they cannot provide the hyperfine couplings of these nuclei. This problem was overcome by the application of the HYSCORE experiment. The 2D HYSCORE spectra show well resolved cross peaks which provide the hyperfine interaction of these nuclei. Simulations of the HYSCORE spectra yield for117, 119Sn an isotropic hyperfine constant,a iso, of ±4.0 MHz and an anisotropic component,T ?, of ±2.0 MHz. Pulsed ENDOR spectra also showed117, 119Sn signals which agree with the above values. The13C cross peaks yielda iso=±1.0 MHz andT ?=±2.0 MHz. Similar C cross peaks were observed in spectra of calcined Cu/SnO2 after the adsorption of CO2. Based on the same hyperfine couplings in the samples exposed to13CO and13CO2 the signals were assigned to surface carbonate species generated by part of the Cu(II) S type species rather then by species B and the role of the Cu(II) in the oxidation process is discussed.  相似文献   

17.
The alumina contribution to CO oxidation in the absence of O2 on metal oxide supported catalysts was investigated by CO TPR and in-situ FTIR and DRIFT studies up to 800 °C. These tests were performed on two Al2O3 supported catalysts (1 wt.% Pt/La/γ-Al2O3 and 8 wt.% Cu/γ-Al2O3) and on two corresponding alumina supports (5 wt.% La2O3 stabilised γ-Al2O3 and high mechanical resistant spherical γ-Al2O3 particles). The quantitative determination of CO consumption and CO2 and H2 formation on the alumina supports was in agreement with a WGS reaction occurring between surface OH and CO with a predominantly 2:1 stoichiometry. In the CO TPR of metal oxide supported catalysts, in addition to the reduction of the metal, a WGS reaction took place with enhanced kinetics. This enhancement was the result of a CO spillover phenomenon from the metal to alumina hydroxyls. This phenomenon significantly affected the evaluation of the reduction degree of the supported metal and could not be neglected in the subsequent calculations.  相似文献   

18.
Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm−1, belonging to the ν 1+ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm−1 are optimized for the target conditions of the shock-heated gases (P∼1–2 atm, T∼800–1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600–1200 K) and in non-reactive shock-tube experiments (900–1700 K) using CO2–Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.  相似文献   

19.
S. Ramesh  G. P. Ang 《Ionics》2010,16(5):465-473
Plasticized polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as the host polymer and lithium bis(trifluoromethanesulfonyl)imide LiN(CF3SO2)2 as a salt were prepared by solution casting technique at different ratios. The ionic conductivity varied slightly and exhibited a maximum value of 3.65 × 10−5 S cm−1 at 85% PMMA and 15% LiN(CF3SO2)2. The complexation effect of salt was investigated using FTIR. It showed some simple overlapping and shift in peaks between PMMA and LiN(CF3SO2)2 salt in the polymer electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were added to the PMMA–LiN(CF3SO2)2 polymer electrolyte as plasticizer to enhance the conductivity. The highest conductivities obtained were 1.28 × 10−4 S cm−1 and 2.00 × 10−4 S cm−1 for EC and PC mixture system, respectively. In addition, to improve the handling of films, 1% to 5% fumed silica was added to the PMMA–LiN(CF3SO2)2–EC–PC solid polymer electrolyte which showed a maximum value at 6.11 × 10−5 S cm−1 for 2% SiO2.  相似文献   

20.
The adsorption properties of a variety of atomic species (H, O, N, S, and C), molecular species (N2, HCN, CO, NO, and NH3) and molecular fragments (CN, NH2, NH, CH3, CH2, CH, HNO, NOH, and OH) are calculated on the (111) facet of palladium using periodic self-consistent density functional theory (DFT–GGA) calculations at ¼ ML coverage. For each species, we determine the optimal binding geometry and corresponding binding energy. The vibrational frequencies of these adsorbed species are calculated and are found to be in good agreement with experimental values that have been reported in literature. From the binding energies, we calculate potential energy surfaces for the decomposition of NO, CO, N2, NH3, and CH4 on Pd(111), showing that only the decomposition of NO is thermochemically preferred to its molecular desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号