首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This communication reports a nanocatalyst-based electrochemical assay for proteins. Ultrasensitive detection has been achieved by signal amplification combined with noise reduction: the signal is amplified both by the catalytic reduction of p-nitrophenol to p-aminophenol by gold-nanocatalyst labels and by the chemical reduction of p-quinone imine to p-aminophenol by NaBH4; the noise is reduced by employing an indium tin oxide electrode modified with a ferrocenyl-tethered dendrimer and a hydrophilic immunosensing layer.  相似文献   

2.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

3.
《Electroanalysis》2018,30(5):955-961
Herein, a sensitive electrochemical Pb2+ sensor was developed which based on DNA‐functionalized Au nanoparticles(AuNPs) and nanocomposite modified electrode. The DNA‐functionalized AuNPs includes two types of DNA, namely a Pb2+‐mediated DNAzyme comprising a biotin labeled‐enzyme DNA and a substrate strand DNA with a typical stem‐loop structure, and a ferrocene‐labeled linear signal DNA. Without Pb2+, the hairpin loop impeded biotin binding to avidin on the electrode. However,when the goal Pb2+ exists, the substratum strand was divided into two fragments that lead to the enzyme strand was substratumed on the electrode and biotin was admited by avidin, bringing about DNA‐functionalized AuNP(AuNPs) deposition on the electrode surface.The differential pulse voltammetry (DPV) was used to measure electrochemical response signals connect to signal DNA.For the amplification characters of the DNA‐functionalized AuNPs and nanocomposite, the electrochemical detection signal of Pb2+ was greatly improved and revealed high specificity. Under optimum conditions, the resultant biosensor bringed out a high sensitivity and selectivity for the determination of Pb2+. The proposed method was able to detect as low as picomolar Pb2+ concentrations.  相似文献   

4.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

5.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

6.
Kwon SJ  Yang H  Jo K  Kwak J 《The Analyst》2008,133(11):1599-1604
Redox cycling of enzymatically amplified electroactive species has been widely employed for high signal amplification in electrochemical biosensors. However, gold (Au) electrodes are not generally suitable for redox cycling using a reducing (or oxidizing) agent because of the high background current caused by the redox reaction of the agent at highly electrocatalytic Au electrodes. Here we report a new redox cycling scheme, using nicotinamide adenine dinucleotide (NADH), which can be applied to Au electrodes. Importantly, p-aminophenol (AP) redox cycling by NADH is achieved in the absence of diaphorase enzyme. The Au electrodes are modified with a mixed self-assembled monolayer of mercaptododecanoic acid and mercaptoundecanol, and a partially ferrocenyl-tethered dendrimer layer. The self-assembled monolayer of long thiol molecules significantly decreases the background current of the modified Au electrodes, and the ferrocene modification facilitates easy oxidation of AP. The low amount of ferrocene on the Au electrodes minimizes ferrocene-mediated oxidation of NADH. In sandwich-type electrochemical immunosensors for mouse immunoglobulin G (IgG), an alkaline phosphatase label converts p-aminophenylphosphate (APP) into electroactive AP. The amplified AP is oxidized to p-quinoneimine (QI) by electrochemically generated ferrocenium ion. NADH reduces QI back to AP, which can be re-oxidized. This redox cycling enables a low detection limit for mouse IgG (1 pg mL(-1)) to be obtained.  相似文献   

7.
We report a new strategy for electrochemical detection of hepatitis C virus (HCV) based on the electrocatalytic signal amplification of gold nanoparticles (AuNPs) combining with a conformation-switched hairpin DNA probe for improving selectivity.  相似文献   

8.
《Electroanalysis》2018,30(8):1757-1766
Electrochemical sensors provide a selective, sensitive and an easy approach to detect hazardous substances such as hydrazine. Herein, we investigate a facile route for the fabrication of a nanostructured composite based on Au nanoparticles (AuNPs) decorated graphene and present its sensing performance towards hydrazine. Our strategy involves electrophoretic deposition (EPD) of graphene oxide (GO) on Au substrate to obtain a uniform layer EPD‐GO, followed by electrochemical reduction of GO to yield high quality graphene ERGO and electrodeposition of monodispersed AuNPs on ERGO (AuNPs/ERGO/Au). The modified AuNPs/ERGO/Au electrode was characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT‐IR) techniques. The sensor exhibited an improved catalytic activity with a peak potential of +87 mV (vs. Ag/AgCl) for hydrazine oxidation. The high performance of this hybrid electrode is due to the presence of a synergistic effect between AuNPs and ERGO at their interface. Insights into the mechanism and kinetics of hydrazine oxidation are withdrawn from varying the voltage scan rate as the reaction is fully irreversible and diffusion‐controlled. The proposed hydrazine sensor showed suitability for nanomolar detection (detection limit of 74 nM), high selectivity in the presence of common ions and efficiency for application in water samples.  相似文献   

9.
基于金纳米颗粒(AuNPs)比表面积大、 尺寸小和能够承载大量DNA片段的特点, 建立了一种免标记、 简便、 快速检测DNA聚合酶Klenow fragment exo-(KF-)的电化学方法. 首先将巯基化的DNA引物片段修饰在金电极上, 然后加入模板DNA链以及修饰有报告DNA链的金纳米颗粒(AuNPs-DNA), 模板DNA链能同时与DNA引物片段和修饰在AuNPs上的报告DNA链进行互补杂交形成"三明治"结构, 从而将AuNPs-DNA修饰在电极表面; 当加入电活性物质钌铵(RuHex)后, RuHex可通过静电吸附作用结合在DNA上. AuNPs上修饰的报告DNA链能够吸附大量RuHex, 导致电化学信号放大. 当加入脱氧核糖核苷三磷酸(dNTPs)以及KF-聚合酶后, 引物片段发生延伸反应, 将与模板DNA链杂交的AuNPs-DNA竞争下来, 带走大量的RuHex, 使电信号降低, 从而实现对聚合酶的检测. 实验结果表明, 利用该方法可以检测到5 U/mL的KF-.  相似文献   

10.
The common drawback of optical methods for rapid detection of nucleic acid by exploiting the differential affinity of single-/double-stranded nucleic acids for unmodified gold nanoparticles (AuNPs) is its relatively low sensitivity. In this article, on the basis of selective preconcentration of AuNPs unprotected by single-stranded DNA (ssDNA) binding, a novel electrochemical strategy for nucleic acid sequence identification assay has been developed. Through detecting the redox signal mediated by AuNPs on 1, 6-hexanedithiol blocked gold electrode, the proposed method is able to ensure substantial signal amplification and a low background current. This strategy is demonstrated for quantitative analysis of the target microRNA (let-7a) in human breast adenocarcinoma cells, and a detection limit of 16 fM is readily achieved with desirable specificity and sensitivity. These results indicate that the selective preconcentration of AuNPs for electrochemical signal readout can offer a promising platform for the detection of specific nucleic acid sequence.  相似文献   

11.
The preparation and characteristics of a disposable amperometric magnetoimmunosensor, based on the use of functionalized magnetic beads (MBs) and gold screen-printed electrodes (Au/SPEs), for the specific detection and quantification of Staphylococcal protein A (ProtA) and Staphylococcus aureus (S. aureus) is reported. An antiProtA antibody was immobilized onto ProtA-modified MBs, and a competitive immunoassay involving ProtA antigen labelled with HRP was performed. The resulting modified MBs were captured by a magnetic field on the surface of tetrathiafulvalene-modified Au/SPEs and the amperometric response obtained at −0.15 V vs the silver pseudo-reference electrode of the Au/SPEs after the addition of H2O2 was used as transduction signal. The developed methodology showed very low limits of detection (1 cfu S. aureus/mL of raw milk samples), and a good selectivity against the most commonly involved foodborne pathogens originating from milk. These features, together with a short analysis time (2 h), the simplicity, and easy automation and miniaturization of the required instrumentation make the developed methodology a promising alternative in the development of devices for on-site analysis.  相似文献   

12.
We herein report an amphiphilic polymer‐, carboxylated multiwalled carbon nanotube (CNT)‐, silane polymer‐, and streptavidin‐modified indium tin oxide (ITO) electrode that allows low nonspecific binding and efficient immobilization of DNA, along with good electrocatalytic activities and low background‐current levels. The low nonspecific binding results from the well‐covering of the CNT and ITO surface with the amphiphilic polymer and silane polymer, as well as the poly(ethylene glycol) groups of the polymers. The streptavidin for DNA immobilization is covalently attached to the carboxylic acid groups of the amphiphilic polymer and CNT. A low surface coverage of CNT on the ITO electrode provides the good electrocatalytic activities and low background‐current levels. The fabricated electrode enables us to achieve a detection limit of 100 pM in DNA detection.  相似文献   

13.
构建了一种高灵敏检测谷胱甘肽(GSH)和半胱氨酸(Cys)的新型电化学生物传感器. 先将富含T碱基的DNA1和DNA2探针分别修饰在金电极和纳米金颗粒(AuNPs)上, 再加入Hg2+, 通过形成T-Hg2+-T结构使AuNPs结合到金电极表面. 当加入GSH(或Cys)后, GSH(或Cys)可以竞争结合T-Hg2+-T结构中的Hg2+, 使AuNPs离开电极表面. 由于AuNPs上修饰的DNA探针能够静电吸附大量电活性物质六氨合钌(RuHex), 因此该过程可引起计时电量信号的显著变化, 据此实现了GSH(或Cys)的高灵敏检测. 该传感器的检出限达10 pmol/L, 比荧光法或比色法降低了2~3个数量级. 实验结果表明, 该传感器具有较好的选择性.  相似文献   

14.
A simple and novel electrochemical immunoassay based on MXene (Ti3C2)−Au nanoparticles (AuNPs) was designed for sensitive screening of a disease-related biomarker, prostate-specific antigen (PSA), by using dopamine-loaded liposomes (DLL) for signal amplification. The system involves two parts, namely, sandwich-type immunoreaction to capture DLL and electrochemical measurement of dopamine. The target PSA can cause a specific antigen-antibody reaction and DLL are enriched in the enzyme-labeled pores. After Triton X-100 is injected into the detection cell, the carried DLL was quickly cracked to release dopamine wrapped in the cavity. A nanocomposite consisting of MXene (Ti3C2) support to immobilize Au nanoparticles (Ti3C2−Au) was utilized to modify a glassy carbon electrode, which gives a strongly enhanced differential pulse voltammetric (DPV) signals for dopamine. In this case, the change of DPV signal depends on the amount of dopamine released by liposomes, which is further positively correlated with the concentration of the analyte PSA. Combining the of MXene (Ti3C2)−AuNPs nanomaterials (large specific surface area, excellent electrical conductivity, and good electrocatalytic properties) with the liposome signal amplification strategy, the electrochemical immunoassay exhibited excellent performance toward PSA determination with a broad linear range of 1 pg/mL to 50 ng/mL and limit of detection down to 0.31 pg/mL (S/N=3) under the optimized testing conditions. High specificity for PSA over other disease-related biomarkers and acceptable nanocomposite/electrode stability were acquired. The excellent analytical performance shows that the current strategy provides an effective detection platform for clinical sample analysis.  相似文献   

15.
Here we report on the preparation and characterization of new electrodes based on aligned carbon nanotubes (ACNTs) for hemoglobin (Hb) electrochemistry and electrocatalysis. The ACNTs are obtained by a thermal chemical vapor deposition method under normal pressure. Then the electrodes are elaborated by first sputtering a thin Au film (thickness of 200 nm) onto the top of the ACNTs, and then removing the Au layer/ACNTs from the quartz substrate with the aide of hydrofluoric acid (HF) treatment. Field emission scanning electron microscopy (FESEM) demonstrates that after nitric acid (HNO3) treatment, the nanotubes of the removed Au layer are totally tip‐opened, purified and organized in a perfect vertically aligned architecture. The final ACNTs electrode is obtained by attaching the Au layer of ACNTs onto a glassy carbon electrode. Then the electrode was modified to act as a matrix for hemoglobin (Hb) immobilization and as an electrode for Hb electroanalysis by the assistance of Au nanoparticles (AuNPs) and SiO2 gel. Due to the individual specific effects of AuNPs, SiO2 gel and ACNTs, the resulting SiO2/Hb‐AuNPs/ACNTs electrode showed good direct electrochemistry of Hb with an apparent Michaelis? Menten constant of 0.44 mM. The electrode showed an excellent electrocatalytic activity towards H2O2, possessing a linear range from 40 µM to 4 mM and the detection limit was 22 µM based on a signal to noise ratio of 3.  相似文献   

16.
利用循环伏安法将金纳米粒子和钼氧化物共同电沉积在玻碳电极表面,制备了金纳米粒子和钼氧化物复合膜修饰电极,利用SEM和XPS研究了MoOx/AuNPs复合膜的表面形态,并研究其修饰电极对葡萄糖的电催化氧化过程. 首次提出了阳极扫描极化反向催化伏安法,即在反向扫描过程中纯的催化氧化电流通过扣减背景电流的方法被提取出来. 显著提高电流测量灵敏度改善了信噪比. 制备的MoOx/AuNPs复合膜修饰电极在0.01-4.0 mmol/L对葡萄糖具有线性响应,电流灵敏度为2.35 mA·L/(mmol·cm2),检测限为9.01 μmol/L(信噪比为3).  相似文献   

17.
A facile one-pot aqueous method has been fabricated for synthesis of Au-CeO(2) hybrid nanosheets. L-Lysine molecules are employed as the junctor to connect the two components of Au and CeO(2) nanoparticles. The obtained catalysts exhibited high catalytic activity, stability, and recyclability for the reduction reaction of p-nitrophenol into p-aminophenol by NaBH(4).  相似文献   

18.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

19.
《Analytical letters》2012,45(4):418-425
A sensitive fluorescence assay for hepatitis B virus (HBV) DNA was developed based on the dissociation of bio-bar-code DNA probes from GoldMag-CS nanoparticles (NPs) and magnetic separation. In this method, the target sequence (HBV DNA) was recognized through sandwich hybridization by the catching probes and the detection probes. Catching probes were modified with biotins, and were specifically bound on streptavidin-coated 96-well microplates; detection probes were all attached on the GoldMag-CS nanoparticles, which also bound bio-bar-code strands with fluorescent tags. Bio-bar-codes were dissociated from the NPs by dithiothreitol (DTT) after DNA target recognition and magnetic separation, and then quantified. Streptavidin-coated 96-well microplates diminished the nonspecific binding of DNA-conjugated GoldMag-CS nanoparticles, thus lowering the background; and GoldMag-CS nanoparticles provided easy separation and significant signal amplification. Together, these two effects brought about the detection limit as low as 7.52 fM.  相似文献   

20.
An electrochemical immunosensor was developed for sensitive assay of E. coli in urban sludge, in which electron mediator-mediated enzymatic catalysis and gold nanoparticles(AuNPs) were utilized for signal amplification. The immnuosensing platform chitosan-thionine(chit-thio)/poly(amidoamine) dendrimer-encapsulated AuNPs [PAMAM(Au)] composites were first prepared from chit-thio and PAMAM(Au) using the layer-by-layer method to provide a matrix for high-stability and high-bioactivity bindings of the capture antibody(cAb). Moreover, the {dAb-AuNPs-HRP} nanoprobes were designed to exploit the amplification effect of the carrier AuNPs due to the loading amounts of horseradish peroxidase(HRP) and the detection antibody(dAb). The sandwich-type immunoassay was then successfully used to assay E. coli based on the oxidation of thionine as a result of H2O2-induced enzymatic catalytic reaction by HRP. This study presents a powerful tool in electrochemical immunoassay for E. coli detection with rapid response, high-sensitivity and high-specificity, providing a potential new tool for feasibility assessment of sludge recycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号