首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe various limited-stretch models of non-linear rubber elasticity, each dependent on only the first invariant of the left Cauchy–Green strain tensor and having only two independent material constants. The models are described as limited-stretch, or restricted elastic, because the strain energy and stress response become infinite at a finite value of the first invariant. These models describe well the limited stretch of the polymer chains of which rubber is composed. We discuss Gent׳s model which is the simplest limited-stretch model and agrees well with experiment. Various statistical models are then described: the one-chain, three-chain, four-chain and Arruda–Boyce eight-chain models, all of which involve the inverse Langevin function. A numerical comparison between the three-chain and eight-chain models is provided. Next, we compare various models which involve approximations to the inverse Langevin function with the exact inverse Langevin function of the eight-chain model. A new approximate model is proposed that is as simple as Cohen׳s original model but significantly more accurate. We show that effectively the eight-chain model may be regarded as a linear combination of the neo-Hookean and Gent models. Treloar׳s model is shown to have about half the percentage error of our new model but it is much more complicated. For completeness a modified Treloar model is introduced but this is only slightly more accurate than Treloar׳s original model. For the deformations of uniaxial tension, biaxial tension, pure shear and simple shear we compare the accuracy of these models, and that of Puso, with the eight-chain model by means of graphs and a table. Our approximations compare extremely well with models frequently used and described in the literature, having the smallest mean percentage error over most of the range of the argument.  相似文献   

2.
We consider a one-dimensional chain of phase-transforming springs with harmonic long-range interactions. The nearest-neighbor interactions are assumed to be trilinear, with a spinodal region separating two material phases. We derive the traveling wave solutions governing the motion of an isolated phase boundary through the chain and obtain the functional relation between the driving force and the velocity of a phase boundary which can be used as the closing kinetic relation for the classical continuum theory. We show that a sufficiently wide spinodal region substantially alters the phase boundary kinetics at low velocities and results in a richer solution structure, with phase boundaries emitting short-length lattice waves in both direction. Numerical simulations suggest that solutions of the Riemann problem for the discrete system converge to the obtained traveling waves near the phase boundary.  相似文献   

3.
A new approach for modeling multivariant martensitic phase transitions (PT) and martensitic microstructure (MM) in elastic materials is proposed. It is based on a thermomechanical model for PT that includes strain softening and the corresponding strain localization during PT. Mesh sensitivity in numerical simulations is avoided by using rate-dependent constitutive equations in the model. Due to strain softening, a microstructure comprised of pure martensitic and austenitic domains separated by narrow transition zones is obtained as the solution of the corresponding boundary value problem. In contrast to Landau-Ginzburg models, which are limited in practice to nanoscale specimens, this new phase field model is valid for scales greater than 100 nm and without upper bound. A finite element algorithm for the solution of elastic problems with multivariant martensitic PT is developed and implemented into the software ABAQUS. Simulated microstructures in elastic single crystals and polycrystals under uniaxial loading are in qualitative agreement with those observed experimentally.  相似文献   

4.
In this paper, a link is established between the statistical theory of long chain molecules and Ogden's phenomenological model of rubber elasticity. It has been shown by several authors in the past that many invariant-based phenomenological models for rubber-like materials are related to the classical statistical theories. The essential means to reach this reconciliation were methods to account for a non-affine deformation of polymer chains in the network, appropriate techniques to calculate their averaged response, and an approximation of the inverse Langevin function appearing in the non-Gaussian statistical theory. It is shown in this paper that the very same approach, if appropriately implemented, allows to express the strain-energy function of Ogden's material in terms of physical constants characterising the polymer chain and network, together with few additional parameters that account for the non-affine deformation of the polymer chains. Particularly, it is shown that Ogden's model can be represented as a non-affine non-Gaussian 3-chain model with topological constraints.  相似文献   

5.
In this paper, a new kind of mixed energy variational principles in linear elasticity—the combined energy variational principles is presented. First, we define the conjugate body of an elastic body, which is obtained by changing the boundary conditions of the elastic body. Next, we decompose the conjugate body into two component-states, construct functionals of potential energy and complementary energy, respectively, for the component-states and define the additional hybrid energy between the component-states. Thus the functionals of combined energy can be constructed. Three typical combined energy variational principles are demonstrated and the other forms of combined energy variational principles are given. The application of the proposed principles to the calculation of thin plates with complicated boundaries is shown.  相似文献   

6.
为了刀板切削过程中的受力满足最合理的设计准则,专用传感器设计须基于固定总体结构,对局部结构优化,以达到设计合理的目的。刀板切削时受到土体的阻力可分解为水平力和垂直力,多维力传感器测量了两个力的大小和对传感器产生的弯矩。刀板工作中,弯矩引起的正应力比垂直力引起的拉应力及水平力引起的切应力要大得多,因此特别设计了弹性体的局部结构使得三个应力值接近于同一量级。传感器的标定结果显示,输入输出有良好的线性关系,并且很好地消除了耦合效果。最终,将该传感器应用于土体切削测试并验证了其可靠性。  相似文献   

7.
自动控制中弹性器件的弹力计算方法   总被引:1,自引:0,他引:1  
基于能量守恒定律,推导出一种弹力的简单计算方法.该方法适用于电气自动控制过程中作为执行器件的线性和非线性弹性器件.考虑到自动控制过程中需要对器件能否产生弹力进行判断,特提出判定方法.举出实例对器件的弹力进行了分析和计算.  相似文献   

8.
A novel method is suggested to deal with so-called uncertainty inverse problems (UIPs) which are a class of inverse problems with uncertainty in the system parameters of the forward model. Interval which represents a closed bounded set of real numbers is used to model and characterize the uncertainty in our formulation, and hence only the bounds of the uncertainty of the system parameters are needed. For a specific input vector, the possible values of the outputs form an interval vector because of the uncertainty. An error function is defined using the measured interval vector of the outputs and those computed using a forward model. The UIP is then formulated as an optimization problem which minimizes the error function. To improve the optimization efficiency, an interval forward model is constructed based on the interval analysis method which can calculate very efficiently the bounds of the outputs caused by the uncertainty of the system parameters. The present method is applied to a complex inverse problem, namely material characterization of composite laminates using elastic waves. Uncertainty of load is considered, and the hybrid numerical method (HNM) is used to compute the transient displacement responses. The engineering constants of two kinds of laminates are successfully identified using the simulated measurements of the outputs.  相似文献   

9.
Up to now, the indentation of hyperelastic soft materials has not been completely understood. In this paper, the spherical indentation on hyperelastic soft solids was systematically investigated through theoretical analysis and finite element method (FEM). The validation and application of the Hertzian load-displacement relation for indentation of hyperelastic soft materials were clarified, the effects of large deformation and material nonlinearity on spherical indentation of hyperelastic soft materials were analyzed and discussed. It was found that the complicated indentation behaviors of hyperelastic soft solids mainly depended on the coupling interactions of large deformation and material nonlinearity. Besides, we proposed two new nonlinear elastic contact models to separate the effects of large deformation and material nonlinearity on spherical indentation responses of hyperelastic soft solids. Our efforts might help to enhance the understanding of hyperelastic indentation problems and provided necessary instructions for the mechanical characterization of hyperelastic soft materials.  相似文献   

10.
We show that a non-physical velocity may appear in the numerical computation of the flow of an incompressible fluid subjected to external forces. A distorted mesh and the use of a numerical method which does not rigorously ensure the incompressibility condition turn out to be responsible for this phenomenon. We illustrate it with numerical examples and we propose a projection method which improves the results. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
《Comptes Rendus Mecanique》2017,345(12):922-929
We employ conformal mapping techniques to design harmonic elastic inclusions when the surrounding matrix is simultaneously subjected to remote uniform stresses and a point moment located at an arbitrary position in the matrix. Our analysis indicates that the uniform and hydrostatic stress field inside the inclusion as well as the constant hoop stress along the entire inclusion–matrix interface (on the matrix side) are independent of the action of the point moment. In contrast, the non-elliptical shape of the harmonic inclusion depends on both the remote uniform stresses and the point moment.  相似文献   

12.
Flutter instability in an infinite medium is a form of material instability corresponding to the occurrence of complex conjugate squares of the acceleration wave velocities. Although its occurrence is known to be possible in elastoplastic materials with nonassociative flow law and to correspond to some dynamically growing disturbance, its mechanical meaning has to date still eluded a precise interpretation. This is provided here by constructing the infinite-body, time-harmonic Green's function for the loading branch of an elastoplastic material in flutter conditions. Used as a perturbation, it reveals that flutter corresponds to a spatially blowing-up disturbance, exhibiting well-defined directional properties, determined by the wave directions for which the eigenvalues become complex conjugate. Flutter is shown to be connected to the formation of localized deformations, a dynamical phenomenon sharing geometrical similarities with the well-known mechanism of shear banding occurring under quasi-static loading. Flutter may occur much earlier than shear banding in a process of continued plastic deformation.  相似文献   

13.
The deformation of a rectangular block into an annular wedge is studied with respect to the state of swelling interior to the block. Nonuniform swelling fields are shown to generate these flexure deformations in the absence of resultant forces and bending moments. Analytical expressions for the deformation fields demonstrate these effects for both incompressible and compressible generalizations of conventional hyperelastic materials. Existing results in the absence of a swelling agent are recovered as special cases.  相似文献   

14.
The paper establishes the relationship between the static contact problems of elasticity and electroelasticity (in the absence of friction) for a transversely isotropic half-space whose surface is the isotropy plane. This makes it possible to avoid solving the electroelastic problem by finding all the characteristics of electroelastic contact from known cases of purely elastic interaction. Moreover, the electroelastic state of the half-space can be fully described using a known harmonic function, which is a solution of the purely elastic problem. The approach is exemplified by solving contact problems of electroelasticity for flat, elliptic, two circular, conical, and paraboloidal (circular and elliptic in plan) punches __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 11, pp. 69–84, November 2006.  相似文献   

15.
A novel post-processing algorithm is proposed to correct statistical bias observed in the treatment of time series obtained by a phase Doppler anemometer (PDA) at flow locations with variable particle velocity and concentration. Extensive properties of each validated particle are weighted with their inverse measuring (validation) volume to account for the procedure of particle sampling and fluctuations in the particle concentration. To compensate for the short characteristic length of the validation volume, the properties of particles are expressed by properties of fields of particle groups, using a local averaging time. A window shift and a decorrelation scheme are applied on the fields to increase their frequency resolution. This algorithm has been tested on numerical time series, provided by an Eulerian/Lagrangian code representing a gas/solids flow past a bluff body. Moments and spectral estimates of concentration and velocity of particle groups were successfully validated by the numerical simulation using the PDA data algorithm and control volume averaging. The control volume was much larger than the PDA validation volume, but the centre positions of the two volumes were identical.  相似文献   

16.
Analytical solutions for diffuse interface propagation are found for two recently developed Landau potentials that account for the phenomenology of stress-induced martensitic phase transformations. The solutions include the interface profile and velocity as a function of temperature and stress tensor. An instability in the interface propagation near lattice instability conditions is studied numerically. The effect of material inertia is approximately included. Two methods for introducing an athermal interface friction in phase field models are discussed. In the first method an analytic expression defines the location of the diffuse interface, and the rate of change of the order parameters is required to vanish if the driving force is below a threshold. As an alternative and more physical approach, we demonstrate that the introduction of spatially oscillatory stress fields due to crystal defects and the Peierls barrier, or to a jump in chemical energy, reproduces the effect of an athermal threshold. Finite element simulations of microstructure evolution with and without an athermal threshold are performed. In the presence of spatially oscillatory fields the evolution self-arrests in realistic stationary microstructures, thus the system does not converge to an unphysical single-phase final state, and rate-independent temperature- and stress-induced phase transformation hysteresis are exhibited.  相似文献   

17.
Interfacial and inhomogeneity penalties in phase transitions   总被引:3,自引:0,他引:3  
Non-convex free energies permit phase transitions to occur. The ensuing state of a body is non-homogeneous and endowed with interphase boundaries. Both the inhomogeneity and the interfaces may contribute to the free energy and thus affect the onset of the phase transition. The paper investigates these effects in a one-dimensional setting and for deformation control. The main conclusion is that the incipient phase mixture is characterized by a stable kernel of small but finite phase fraction. This kernel must not be confused with the unstable nucleus whose energy maximum must be overcome before the kernel can form. We consider also the energy landscape of partial equilibria in which the load is uniform but the phase fraction and the number of interfaces have not yet reached equilibrium.Received: 6 July 2002, Accepted: 18 February 2003, Published online: 9 May 2003PACS: 64.60.-i  相似文献   

18.
This paper deals with a two-dimensional (2D) problem for a transverselyisotropic thick plate having heat sources and body forces. The upper surface of the plate is stress free with the prescribed surface temperature, while the lower surface of the plate rests on a rigid foundation and is thermally insulated. The study is carried out in the context of the generalized thermoelasticity proposed by Green and Naghdi. The governing equations for displacement and temperature fields are obtained in the Laplace-Fourier transform domain by applying the Laplace and Fourier transforms. The inversion of the double transform is done numerically. Numerical inversion of the Laplace transform is done based on the Fourier series expansion. Numerical computations are carried out for magnesium (Mg), and the results are presented graphically. The results for an isotropic material (Cu) are obtained numerically and presented graphically to be compared with those of a transversely isotropic material (Mg). The effect of the body forces is also studied.  相似文献   

19.
This work studied the mechanical properties of a series of industrial fuel powders: bituminite, lignite, and petroleum coke. Sieved cuts of these powders were assessed and the flow properties of each sample were used to calculate tensile strengths as functions of consolidation stress. In addition, BET surface areas and dispersive surface energies were estimated from surface energy analysis. To analyze the bulk flow properties of these fuel powders in terms of micro-contact mechanics, the fundamentals of fuel powder adhesion and consolidation were reconsidered based on the “stiff particles with soft contacts” model proposed by Tomas. In the present work, a multi-contact concept was introduced to account for the irregular shapes of actual particles. This modified model was based on elastic–plastic contact deformation theory and was employed to describe the contact between rough particles and to estimate the associated inter-particle forces. The results were used in conjunction with the Rumpf approach to relate the isostatic tensile strength to the degree of consolidation. Applying average values for the powder compressibility parameters allowed the model to be used for predictive purposes, and an acceptable level of agreement was found between predicted and measured tensile strengths.  相似文献   

20.
20多年以来,采用小型试件的小冲杆试验技术来测量在役设备材料的各种力学参数已经取得了很大进展,这个方法已经用来确定材料的弹性模量、屈服强度、塑性性能、抗拉强度、韧一脆转变温度、断裂韧度、蠕变性能和黏塑性性能等各种力学性能。由于从小冲杆试验的测量结果来确定材料的力学性能是一个反问题,因此,与此有关的反问题分析方法也得到了相应的发展。本文系统综述小冲杆试验的测量技术及从测量数据来确定材料弹塑性参数的各种经验方法和计算方法,例如有限元分析和参数法、反向有限元法、有限元和反方法、反向识别和人工神经网络、有限元优化和试验变形形状以及杂交反方法等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号