首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of flow and combustion of turbulent jets of fuel gas in the external medium of an oxidant (air) is solved with regard to the existence of the actual boundary of the turbulent flow region of a jet. Based on the ideas of the friction force of the external flow acting on the boundary of a jet, the entrainment equation for the external medium is derived that closes the system of equations of motion of turbulent jets. The physical meaning of the dissipation rate of the turbulent energy of a jet is interpreted as the work of the friction force. To describe the combustion kinetics, the limit of instantaneous reactions corresponding to the diffusion combustion mode is used. Calculations of the effective reaction rates for reactants and the volumes occupied by them are based on the representation of a turbulent medium as an aggregation of independent turbulent particles—vortices—whose random contacts lead to the mixing and combustion of reacting substances [31]. The concomitant phenomena of flow and combustion are analyzed, including radiation effects. In particular, it is shown that the apparent increase in the combustion temperature with increasing Reynolds number is in fact attributed to the relative decrease of thermal radiation losses. Qualitative agreement is obtained between the results of the theoretical calculations of the length of a combustion torch and experimental data.  相似文献   

2.
Combustion of a pulverized coal torch has been numerically simulated on the basis of the equations of multicomponent turbulent two-phase flows. The results of three-dimensional simulation of conventional and plasma activated coal combustion in a furnace are presented. Computer code Cinar ICE was verified at coal combustion in the experimental furnace with thermal power of 3 MW that was equipped with plasma-fuel system. Operation of the furnace has been studied at the conventional combustion mode and with plasma activation of coal combustion. Influence of plasma activation of combustion on thermotechnical characteristics of the torch and decrease of carbon loss and nitrogen oxides concentration at the furnace outlet has been revealed.  相似文献   

3.
本文在分级进风燃烧室的热态实验装置上,测量了燃烧室内湍流燃烧的温度场和组分浓度场,研究了分级进风的流量比率即二次风率对燃烧及NOx生成的影响.得到了四组不同二次风率下燃烧室内气体温度和O2、CO2、CO与NO浓度的分布.  相似文献   

4.
Ammonia combustion appears as a meaningful way to retrieve stored amounts of excess variable renewable energy, and the spark-ignition (SI) engine has been proposed as a practical conversion system. The present work aims at elucidating the combustion characteristics of ammonia blends in engine-relevant turbulent conditions. To that end, laminar and turbulent flame experiments were conducted in a constant-volume vessel at engine-relevant conditions of 445 K and 0.54 MPa to assess the combustion behavior of ammonia/hydrogen/air, ammonia/methane/air and methane/hydrogen/air mixtures observed in an all-metal single-cylinder SI engine. Results show that the respective accelerating or decelerating effects of hydrogen or methane enrichment observed in the SI engine could not be sufficiently explained by the measured laminar burning velocities of the mixtures. Since the latter are very low, the studied combustion regimes are at the boundary between the thin and broken reaction zones regimes, and thus strongly influenced by flame-turbulence interactions. The quantification of the flame response to turbulence shows much higher effects for ammonia blends, than for methane-based fuels. The aforementioned opposite effects of ammonia enrichment with hydrogen or methane are observed on the turbulent burning velocity during the turbulent flame experiments and correlated to the thermochemical properties of the reactants and the flame sensitivity to stretch. The latter may explain an unexpected bending effect on the turbulent-to-laminar velocity ratio when increasing the hydrogen fraction in the ammonia/hydrogen blend. Nevertheless, a very good correlation of the turbulent velocity was found with the Karlovitz and Damköhler numbers, that suggests that ammonia combustion in SI engines may be described following the usual turbulent combustion models. This encourages further investigations on ammonia combustion for the optimization of practical systems, by means of dedicated experiments and numerical simulations.  相似文献   

5.
高温空气燃烧炉内湍流混合特性的数值研究   总被引:2,自引:0,他引:2  
应用自行研发的三维流动、燃烧、传热和污染物NOx湍流生成的数值模拟程序,对高温空气燃烧实验模型炉进行了湍流扩散燃烧混合特性的数值模拟.数值预报了燃烧室内气体燃料和空气的混合物分数及其湍流脉动的三维分布.数值研究结果表明:在一定的几何条件和气体动力学条件下,高温空气燃烧的湍流混合在更广泛的区域内以较小梯度的进行;混合物分数的脉动主要分布在燃烧区,这表明高温空气燃烧的火焰厚度更大,具有燃烧释热更趋均匀的特性.数值模拟结果与相关的实验结果有相同的规律.  相似文献   

6.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

7.
We have considered the functional dependence of the ionization detector readings (ion current) on the composition of the fuel–air mixture, adiabatic temperature, and the turbulent combustion zone width. Experiments on the engine show that, for an air excess factor of 0.75–1.15, the coincidence of the calculated and experimental data exceeds 90%. Our results can be used to predict and monitor the adiabatic temperature of the flame and the width of the turbulent combustion zone in the combustion changer of the internal combustion engine using the ionization detector.  相似文献   

8.
分级进风对旋流燃烧室内湍流燃烧的影响   总被引:5,自引:0,他引:5  
本文在分级进风旋流燃烧室的实验台上,测量了在不同的分级进风比率或二次直流风率条件下,湍流旋流燃烧的时均温度场、O_2、CO_2、CO和NO浓度场的分布。通过实验测量结果分析了分级进风对旋流燃烧室内湍流燃烧过程及NOx生成的影响。  相似文献   

9.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

10.
本文在分级进风旋流燃烧室的实验装置上进行了湍流燃烧的实验研究。测量了在不同的一次风旋流数下,气体的时均温度、O2、CO2、CO和NO浓度的分布。利用实验测量结果分析了一次风旋流数对燃烧室内湍流燃烧及NOx生成的影响。  相似文献   

11.
The computational experiments using the “Overfire Air” (OFA) technology at the coal dust torch combustion in the combustor of the BKZ-160 boiler of the heat power plant No. 2 in Almaty have been conducted. The results show a possibility of reaching a reduction of the emission of noxious nitrogen oxides NO x and minimizing the energy losses. The results of numerical experiments on the influence of the additional air supply on the main characteristics of heat and mass transfer are presented. A comparison with the base regime of the solid fuel combustion when there is no supply of the additional air (OFA = 0 %) has been made.  相似文献   

12.
13.
利用Rosemount气体分析仪和定碳炉搭建起固定床燃烧反应试验平台,通过红外光谱分析技术定量分析沥青及其胶浆在高升温速率条件下燃烧反应的有毒气态产物成分、及其释放规律。研究表明,在高升温速率、近等温条件下,沥青及胶浆的燃烧过程可近似分为活泼挥发组分析出燃烧、二次挥发析出结合残炭燃烧两个阶段,其主要气态产物为CO2,CO,NO,NO2及SO2。沥青材料中活泼挥发组分含量是影响燃烧气态产物释放规律的关键因素之一,减少沥青材料中活泼挥发组分的含量可有效降低燃烧气态产物的生成、尤其是CO的产生。  相似文献   

14.
There is a need to better understand particle size distributions (PSDs) from turbulent flames from a theoretical, practical and even regulatory perspective. Experiments were conducted on a sooting turbulent non-premixed swirled ethylene flame with secondary (dilution) air injection to investigate exhaust and in-burner PSDs measured with a Scanning Mobility Particle Sizer (SMPS) and soot volume fractions (fv) using extinction measurements. The focus was to understand the effect of systematically changing the amount and location of dilution air injection on the PSDs and fv inside the burner and at the exhaust. The PSDs were also compared with planar Laser Induced Incandescence (LII) calibrated against the average fv. LII provides some supplemental information on the relative soot amounts and spatial distribution among the various flow conditions that helps interpret the results. For the flame with no air dilution, fv drops gradually along the centreline of the burner towards the exhaust and the PSD shows a shift from larger particles to smaller. However, with dilution air fv reduces sharply where the dilution jets meet the burner axis. Downstream of the dilution jets fv reduces gradually and the PSDs remain unchanged until the exhaust. At the exhaust, the flame with no air dilution shows significantly more particles with an fv one to two orders of magnitude greater compared to the Cases with dilution. This dataset provides insights into soot spatial and particle size distributions within turbulent flames of relevance to gas turbine combustion with differing dilution parameters and the effect dilution has on the particle size. Additionally, this work measures fv using both ex situ and in situ techniques, and highlights the difficulties associated with comparing results across the two. The results are useful for validating advanced models for turbulent combustion.  相似文献   

15.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

16.
预热温度影响甲烷高温空气燃烧特性的数值分析   总被引:16,自引:0,他引:16  
为了深入认识近年发展起来的一种新型燃烧技术-高温空气燃烧的机理和超低氮氧化物排放特性,本文将扩散燃烧模型、热力NO生成模拟与完全湍流N-S方程相结合,数值研究了甲烷高温燃烧的火焰特性、空气预热温度对燃烧特性和NO排放浓度的影响规律。研究结果与实验数据符合良好,为在我国发展这项技术提供了依据。  相似文献   

17.
A laboratory laser spectrometric measurement system for investigation of spatial distributions of local temperatures in a flame at combustion of vapors of various liquid hydrocarbon fuels in oxygen or air at atmospheric pressure is presented. The system incorporates a coherent anti-Stokes Raman spectrometer with high spatial resolution for local thermometry of nitrogen-containing gas mixtures in a single laser shot and a continuous operation burner with a laminar diffusion flame. The system test results are presented for measurements of spatial distributions of local temperatures in various flame zones at combustion of vapor—gas n-decane/nitrogen mixtures in air. Its applicability for accomplishing practical tasks in comparative laboratory investigation of characteristics of various fuels and for research on combustion in turbulent flames is discussed.  相似文献   

18.
为了研究超大涡模拟(VLES)预测湍流燃烧问题的能力,本文采用VLES结合基于假定概率密度函数的火焰面生成流型(FGM)建表湍流燃烧模型对值班甲烷/空气湍流射流扩散火焰(Sandia Flame D)开展了高精度数值研究,并与实验结果进行了详细比较。结果表明本文发展的VLES-FGM方法可以较准确地预测出湍流射流扩散火焰中的非稳态燃烧过程,且VLES湍流模拟方法对于湍流燃烧问题具有较大的应用潜力。  相似文献   

19.
用T-Jump/FTIR在线联用分析技术,研究了GAP/AP混合体系在模拟燃烧条件下快速加热高温高压的热裂解。结果表明,GAP/AP混合体系的主要热裂解气相产物的组成发生了变化,说明组分之间存在相互作用。压力对GAP/AP混合体系气相产物有明显的影响,表明混合体系组分GAP和AP之间的相互作用是通过AP分解气相产物进行的,混合体系不但存在气相之间的反应,也存在气相/凝聚相反应。而温度并没有影响AP对GAP的作用。用T-Jump/FTIR在线分析技术能够实现模拟燃烧条件下含能材料实时气体产物分析,为从微观反应的角度探索含能材料的快速高压热裂解及其组分之间的相互作用提供一条技术途径。  相似文献   

20.
The relationship between mixture flow parameters and the combustion noise from open turbulent premixed gaseous flames is investigated experimentally and it is shown how the overall noise levels and frequency spectra are related to certain flow and geometric parameters and to the turbulence structure of the combustible mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号