首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
用电活性分子——硬脂酸二茂铁酯L-B膜修饰了薄膜CdSe电极,在单色光650nm光照下用循环伏安法研究修饰的薄膜电极的光电化学性能。研究结果指出经多层L-B膜修饰后,薄膜CdSe电极的,I-V性能和光稳定性都有明显改善。用界面能级关系讨论了硬脂酸二茂铁酯L-B膜在光照的CdSe薄膜/Fe(CN)64-溶液界面起传递电荷的中介作用,加速了界面的电荷转移。  相似文献   

2.
测定了二茂铁衍生物——硬脂酸二茂铁酯L-B膜修饰SnO2电极在Fe(CN)63-/4-溶液中的阻抗性能,用单纯形法求出了等效电路中的元件参数值,计算了电极反应速度常数Ks。从分析SnO2电极修饰不同层的硬脂酸二茂铁酯L-B膜的界面阻抗和电极反应的动力学性能,表明与在固相中研究的硬脂酸二茂铁酯L-B膜的阻抗性能明显不同,在Fe(CN)63-/4-溶液中表现了电活性分子修饰电极的界面阻抗行为,进一步证实了修饰在SnO2电极上的硬脂酸二茂铁酯L-B膜在Fe(CN)63-/4-的氧化还原电极反应过程中,起电荷传递的中介作用。  相似文献   

3.
过渡金属配合物阴离子嵌人聚吡咯膜电极的表征   总被引:1,自引:0,他引:1  
采用电化学聚合方法在水溶液中制备出Fe(CN)_6~(4-)嵌入的聚吡咯膜修饰电极, 电极具有稳定的Fe(CN)_6~(4-)/Fe(CN)_6~(3-)电化学响应, 其氧化、还原电位与电解质溶液中H~+浓度有关。借助XPS、IR和ESR方法对聚合物膜结构进行表征, 探讨嵌入物种Fe(CN)_6~(n-)和聚吡咯之间的相互作用, 提出一种可能的轨道相互作用模式。  相似文献   

4.
用旋转环盘电极研究了还原剂K4Fe(CN)6与n-CdSe光阳极上的竞争空穴的氧化反应,证明还原剂捕获光生空穴的途径为直接自价带俘获空穴。又利用L-B技术在n-CdSe电极表面修饰硬脂酸二茂铁酯,结果表明还原剂俘获光生空穴的能力增强,电极的稳定系数提高。  相似文献   

5.
本文采用一步电聚合法,在玻碳电极上制备了聚吡咯-二甲基亚甲蓝(PPYDMMB)纳米棒薄膜,并利用电化学阻抗谱测定冷却水中的聚阴离子阻垢剂(PCA)。扫描电镜分析表明PPY-DMMB复合膜以三维纳米棒结构存在,而原PPY膜为花椰菜状结构。循环伏安扫描初步证明该复合物膜与PCA之间的相互作用。实验以[Fe(CN)_6]~(3-/4-)为电化学探针,在20mmol/L磷酸盐缓冲溶液中,采用电化学阻抗法测试不同浓度PCA对电极表面电荷转移电阻(Rct)响应。结果表明,随着PCA浓度升高,[Fe(CN)6]3-/4-在电极表面的Rct逐渐增加。在2.0×10~(-3)~3.5×10~(-2) g/L的浓度范围内呈良好的线性关系。检测限(S/N3)为5.0×10~(-4) g/L。Ca~(2+)、Mg~(2+)离子浓度和PCA响应成负相关性,证明PCA溶液中所测信号主要来自活性PCA。该复合物修饰电极有望用于冷却水系统中PCA的检测。  相似文献   

6.
合成了1-[3'-(N-吡咯)丙基]-3-己基咪唑四氟硼酸盐离子液体,以其为单体,采用循环伏安法(CV)制备出聚离子液体膜修饰玻碳电极,经十二烷基硫酸钠溶液处理实现阴离子交换,获得聚离子液体疏水膜界面(PIL/GCE),利用扫描电子显微镜(SEM)和K_3Fe(CN)_6/K_4Fe(CN)_6探针表征了该修饰电极的表面形貌和电化学性能,通过伏安法研究了槲皮素在PIL/GCE电极界面上的电化学行为。结果发现:槲皮素在该修饰电极上只有一个不可逆的氧化峰,与裸玻碳电极相比,氧化峰电流显著增强。优化了实验条件如:聚合膜的厚度,pH,富集电位和富集时间等。在优化条件下,槲皮素的氧化峰电流与浓度在0.5~3.0μmol/L和3.0~20μmol/L范围类有良好的线性关系,检测限为0.2μmol/L。方法已用于中药中槲皮素的测定。  相似文献   

7.
本文合成了一种多齿配体化合物——1,4-双(2,2′:6′,2′′-三联吡啶-4′-基)苯及其Fe/Ru金属-超分子聚合物——Poly Fe和Poly Ru,同时以喷涂在ITO导电玻璃上的Fe/Ru金属-超分子聚合物膜为工作电极、0.1 mol/L Li Cl O4水溶液为电解质,并添加K_3Fe(CN)_6为电化学互补材料,制作了系列电致变色器件.由Poly Fe和Poly Ru的组合,可以得到从Poly Fe的蓝紫色渐变到Poly Ru橙红色的彩色薄膜及其多色电致变色器件,器件响应速度快(2 s),褪色电压0.9~1.2 V,着色电压0 V,最大光学对比度约57%.添加K_3Fe(CN)_6后,器件的寿命得到极大提高.  相似文献   

8.
林原  肖绪瑞 《应用化学》1991,8(3):80-82
用外层单电子快速转移的氧化还原剂二茂铁及其衍生物修饰电极,在电极/溶液界面作为电子传递的中介物,可使电极上进行的慢反应得到加速、起中介催化作用。目前研究较多的是共价键合和高分子膜的修饰,其他方式的修饰报道不多。用能实现分子有序化排列的L-B膜技术进行氧化还原电活性分子的修饰电极还未见报道。我们用L-B膜技术在SnO_2电极上修饰了二茂铁的衍生物-硬脂酸二茂铁酯(FcOCOC_(17)H_(35))双亲化合物,曾研究了修饰膜的电化学可逆行为和稳定性。本文研究硬脂酸二茂铁酯L-B膜修饰的SnO_2电极  相似文献   

9.
本文研究二茂铁衍生物——硬脂酸二茂铁酯(FcOCOC17H35)L-B膜技术修饰SnO2电极的循环伏安性能.实验结果用电极表面吸附(修饰)分子的表面活度理论进行计算机拟合和此较,实验数据与理论符合较好.进一步求得修饰分子的标准电极电势和修饰量。结果表明硬脂酸二茂铁酯L-B膜电化学性能稳定,可逆性较好,可以作为快速电荷转移的修饰电极材料。  相似文献   

10.
一原电池温度系数测定林清枝曾于1989年发表以Ag—AgCl为电极的电池温度系数测定的文章。我们实验室也用过该电池体系,后据参考文献[2]改用下列电池: Zn∣Zn~(2+)(1.00mol/L)‖Fe(CN)_6~(-3)(0.10mol/L),Fe(CN)_6~(-4)(0.10mol/L)∣Pt效果相当满意,现简介如下: 仪器与药品  相似文献   

11.
以氧乐果为模板分子,邻苯二胺为功能单体,在碳纳米管修饰的玻碳电极表面通过电聚合方法制成氧乐果分子印迹聚合物膜,用无水乙醇洗脱后制备出对氧乐果有特异响应的电化学传感器。通过循环伏安法和电化学阻抗法对分子印迹传感器的电化学性能进行表征。以K_3Fe(CN)_6为探针,采用差分脉冲伏安法研究了该分子印迹传感器的分析性能,建立了氧乐果的间接测定方法。结果表明,K_3Fe(CN)_6的相对峰电流与氧乐果浓度在1.0×10~(-7)~2.0×10~(-6)mol/L范围内呈良好的线性关系,检出限为3.6×10~(-8)mol/L。  相似文献   

12.
基于石墨烯分子印迹电化学传感器测定芦丁   总被引:2,自引:0,他引:2  
将石墨烯(GR)滴涂至裸Au电极表面,并以邻氨基酚为功能单体,芦丁为模板分子,制备了芦丁分子印迹膜电化学传感器,利用循环伏安法(CV)和差分脉冲伏安法(DPV)对制得的传感器进行了电化学性能研究,并且对制备条件和测定条件进行了优化。结果表明,与裸Au电极相比,该GR修饰的Au电极在[Fe(CN)_6]~(3-/4-)溶液中峰电流明显增大,显著提高了芦丁分子印迹传感器的灵敏度。在最优实验条件下,基于GR分子印迹电化学传感器在4.40×10~(-6)~2.80×10~(-4) mol/L范围内呈良好的线性关系,检测限为1.46×10~(-6) mol/L。用该传感器测定了黑茶中芦丁的含量,获得较好结果。  相似文献   

13.
应用控制电位电解法在金电极上进行了普鲁士蓝(PB)/壳聚糖(CS)修饰膜的电沉积。在pH2、溶液组成为2.5 mmol/L FeCl3 2.5 mmol/L K3[Fe(CN)6] 0.01%CS 0.01 mol/L HCl和0.1 mol/L KCl的溶液中,于0.4 V(vs.SCE)电沉积300 s,获得性能理想的沉积膜。对修饰膜进行了红外和显微表征,结果表明,PB和CS同时沉积在电极上,且膜结构较纯PB沉积膜粗糙,修饰量大,具有更强的空间结构性。研究了PB/CS/金修饰电极(PB/CS/Au/CME)的电化学行为,该电极在中性(pH7.0~8.0)条件下性能比纯PB修饰膜更稳定,具有良好的电化学活性和对H2O2的电催化性能。氧化峰电流与H2O2浓度在1×10-6~5×10-3mol/L范围内呈良好线性关系,为研制基于酶催化反应的电化学生物传感器奠定了良好基础。  相似文献   

14.
采用循环伏安法成功制备了铁氰化锰 (MnHCF)膜修饰玻碳 (GC)电极。探讨了影响膜电沉积的各种因素 ,通过扫描电位范围对膜电沉积的影响 ,确定MnHCF膜的组成为Mn3 + Fe3 + (CN) 6[普鲁士黄类似物Fe3 + Fe3 + (CN) 6]。首次发现在整个膜电沉积过程中存在 3个阶段 ,最后阶段对制备均匀、致密的MnHCF/GC电极至关重要。阴离子的种类对MnHCF/GC电极的伏安特性及电催化活性有显著的影响 ,只有当支持电解质中含有HPO2 -4离子时 ,MnHCF膜修饰电极对H2 O2 的电氧化才表现出良好的电催化作用。在 0 .10mol/LNa2 HPO4溶液中 ,催化电流Δipa与过氧化氢浓度 (CH2 O2 )的线性关系为 :Δipa(μA) =2 .84 32 +2 .2 2 89× 10 4CH2 O2 (mol/L) (R =0 .994 4 ,n =9) ;线性范围为 1.4× 10 -5~ 1.8× 10 -3 mol/L ;检出限为 3.6× 10 -6mol/L (S/k =3)。  相似文献   

15.
宋鸿  阳明福 《化学学报》1993,51(11):1077-1081
本文研究了聚苯并咪唑为修饰膜并交换上Fe(CN)~6^3-的修饰电极的稳定性、适宜酸度条件和电化学行为, 测定了膜中电荷转移扩散系数并用该修饰电极研究了对抗坏血酸的催化氧化作用。  相似文献   

16.
采用循环伏安法在碳糊电极上通过共聚的方式电化学聚合制备了聚硫堇/亚铁氰根修饰碳糊电极(PTH/[Fe(CN)6]4-/CPE)。与聚硫堇修饰碳糊电极(PTH/CPE)相比,该修饰电极在4.5mol.L-1乙酸底液中,产生一对明显的氧化还原峰,表明Fe2+已被成功地引入聚合膜中。结果表明:PTH/[Fe(CN)6]4-/CPE对维生素B6具有明显的电催化氧化作用,在优化的试验条件下,测得维生素B6浓度在3.0×10-5~1.0×10-3 mol.L-1范围内与氧化峰电流呈线性关系,检出限(3S/N)为6.0×10-6 mol.L-1。修饰电极用于测定药物中维生素B6含量,回收率在94.5%~101%之间,测定结果的相对标准偏差(n=6)在1.8%~2.3%之间。  相似文献   

17.
将Na2[Ni(mnt)2](mnt=丁二腈烯二硫醇阴离子)自组装到裸金电极表面,制成mnt-SAM/Au修饰电极,并用电化学方法研究了该修饰电极的电化学性质。实验结果表明,mnt-SAM膜对[Fe(CN)6]3-/[Fe(CN)6]4-有一定的排斥作用,而对[Co(phen)3]2+/[Co(phen)3]3+有一定吸引作用。研究了抗坏血酸(AA)在自组装膜修饰金电极上的电化学氧化行为,考察了溶液pH、扫描速率的影响,结果表明该膜对AA的氧化具有催化作用。在最佳条件下,峰电流与AA的浓度在5.0×10-6~1.3×10-3mol·L-1范围内呈良好的线性关系,相关系数为-0.9987,检测限为1.0×10-6 mol·L-1。  相似文献   

18.
采用水热法制备了具有闪锌矿和纤维锌矿结构的CdSe纳米棒. 纳米棒直径约为100 nm, 长度约为300 nm. 当外加电极电势为-0.6 V 时, 经聚3-氯噻吩[Poly(3-chlorothiophene), P3CT]修饰的CdSe纳米棒具有最大光电流, 并且CdSe/P3CT复合膜电极最高光电转换效率(IPCE)为13.5%, 低于CdSe纳米棒膜电极17.7%的最高IPCE. CdSe/P3CT复合膜电极中存在p-n异质结, p-n异质结的存在使得CdSe/P3CT复合膜电极在长波区(>410 nm)的IPCE整体高于CdSe纳米棒薄膜电极的IPCE.  相似文献   

19.
多壁碳纳米管-分子印迹传感器测定盐酸克伦特罗   总被引:1,自引:0,他引:1  
结合碳纳米材料和分子印迹技术,建立了以K3[Fe(CN)6]为探针测定盐酸克伦特罗的方法。以邻苯二胺为功能单体,盐酸克伦特罗为模板,采用电化学聚合法在多壁碳纳米管修饰电极表面制备了分子印迹薄膜。用乙腈水溶液可快速去除模板,得到多壁碳纳米管-分子印迹传感器。用循环伏安法、交流阻抗法和石英晶体微天平技术对印迹膜进行了表征,膜厚为12.3 nm。K3[Fe(CN)6]的相对峰电流与盐酸克伦特罗的浓度在4.0×10-8~6.6×10-6 mol/L范围内呈线性关系,检测限为8.1×10-9 mol/L。选择性实验表明传感器对结构类似物具有较强的抗干扰能力。此传感器可用于猪肉中盐酸克伦特罗的测定,加标回收率为101.3%~107.9%。  相似文献   

20.
高稳定性普鲁士蓝修饰电极的制备和研究   总被引:4,自引:0,他引:4  
采用恒电流电解方法,使用FeCl_3-K_3Fe(CN)_6和Fe~(?)L_(?) -K_3Fe(CN)_6(L,邻菲绕啉,EDTA,5-磺基水杨酸等)两体系,在玻碳和铂基体上均制得高稳定性普鲁士蓝膜。用循环伏安法在lmol·dm~(-3)KCl(pH4)溶液中,重点地在0.6--1.1V(vs.Ag/AgCl)区间研究了膜的电化学稳定性。在玻碳基体上FeCl_3,-K_3Fe(CN)_6和Pe~(?)·L_(?) -K_3Fe(CN)_6体系电积膜分别可经受10~(?)周和2×10~(?)周扫描。在铂基体上则可分别经受2×10~(?)和7×10~(?)周扫描。红外和X-射线衍射证明两体系制得的膜均为普鲁士蓝膜,稳定性的明显差异是由于普鲁士蓝晶粒度的不同和在基体表面的相对取向不同引起的。对影响膜的稳定性的因素作了较系统的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号