首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Enhancement of the potential root growth volume is the main objective of farmers when they establish a conventional tillage system. Therefore, the main function of primary tillage is to increase soil’s structural macroporosity. In spite of this, during secondary tillage operations on these freshly tilled soils, the traffic on seedbeds causes significant increases in soil compaction. The aim of this paper was to quantify soil compaction induced by tractor traffic on a recently tilled non consolidated soil, to match ballast and tyre size on the tractors used during secondary tillage. The work was performed in the South of the Rolling Pampa region, Argentina. Secondary tillage traffic was simulated by one pass of a conventional 2WD tractor, using four configurations of bias-ply rear tyres: 18.4×34, 23.1×30, 18.4×38 and 18.4×38 duals, two ballast conditions were used in each configuration. Soil bulk density and cone index in a 0 to 600 mm profile were measured before and after traffic. Topsoil compaction increased as did ground pressure. Subsoil compaction increased as total axle load increased and was independent from ground pressure. At heavy conditions, topsoil levels always showed higher cone index values. From 150 to 450 mm depth, the same tendency was found, but with smaller increases in the cone index parameter, 22 to 48%, averaging 35%. Finally, at the deepest layer considered, 600 mm, differential increases due to the axle load are great enough as to be considered similar to those found in the upper horizon, 36 to 64%, averaging 55%. On the other hand, bulk density tended to be less responsive than cone index to the traffic treatments. Topsoil compaction can be reduced by matching conventional bias-ply tyres with an optimized axle weight.  相似文献   

2.
A field experiment was conducted on alluvial soil with sandy loam texture, in a complete randomized design, to determine the compaction of sub-soil layers due to different passes of a test tractor with varying normal loads. The selected normal loads were 4.40, 6.40 and 8.40 kN and the number of passes 1, 6, 11 and 16. The bulk density and cone penetration resistance were measured to determine the compaction at 10 equal intervals of 5 cm down the surface. The observations were used to validate a simulation model on sub-soil compaction due to multiple passes of tractor in controlled conditions. The bulk density and penetration resistance in 0–15 cm depth zone continuously increased up to 16 passes of the test tractor, and more at higher normal loads. The compaction was less in different sub-soil layers at lower levels of loads. The impact of higher loads and larger number of passes on compaction was more effective in the soil depth less than 30 cm; for example the normal load of 8.40 kN caused the maximum bulk density of 1.53 Mg/m3 after 16 passes. In 30–45 cm depth layer also, the penetration resistance increased with the increase in loads and number of passes but to a lesser extent which further decreased in the subsoil layers below 45 cm. Overall, the study variables viz. normal load on tractor and number of passes influenced the bulk density and soil penetration resistance in soil depth in the range of 0–45 cm at 1% level of significance. However, beyond 45 cm soil depth, the influence was not significant. The R2 calculated from observed and predicted values with respect to regression equations for bulk density and penetration resistance were 0.7038 and 0.76, respectively.  相似文献   

3.
This paper discusses the loading of a typical central Anatolian soil by the most commonly used corn and wheat production agricultural equipment. It further describes the effect that loading and soil conditions have on soil strength, namely compaction, and proposes techniques for minimizing undesired soil compaction. Experiments were carried out on a typical central Anatolian medium-textured imperfectly drained clay loam soil (Cambisol). Three different tillage methods and subsequently the same field operations were used for each rotation. Shear strength, penetration resistance, bulk density and moisture variations were detected in four sampling periods at each rotation. Tillage reduced the soil strength with the mouldboard plough causing the greatest loosening. However, natural processes and the vehicular traffic caused the soil to be re-compacted to about the same values as before. In any of the cases the obtained parameters did not exceed the critical values for plant growth except the penetration resistance in the 20–30 cm depth layer during corn production.  相似文献   

4.
Soil compactions are widely dispersed in the world but tend to be the most prevalent, where heavy machinery is used in agriculture. The increasing use of heavy machinery is the primary cause of soil and subsoil compaction. The impact of subsoil compaction on root growth and yield of wheat (Triticum aestivum L) were evaluated during 2006 and 2007. Sub-soil compactions were created by three normal loads, i.e. 4.40, 6.40 and 8.40 kg and four number of passes of tractor, i.e. 1, 6, 11 and 16. The field was divided into 39 plots including a control plot, i.e. no passes of the tractor. The size of each plot was 400 square meter. A factorial randomized block design was followed in laying out the experiment and care was taken that all the 13 treatments and their replications are included in field experiments. It was observed that for all the compaction treatments in the field experiment on the wheat crop, 51–61% of wheat roots were confined in 0–15 cm, 17–20% in 15–30 cm and the rest 22–28% is below 30 cm soil layer. Sub-soil compaction reduced the wheat crop yields to a maximum of 23%. A statistical model is developed to predict crop yield considering the root length density of the crop. Average root diameters increased with the increase of the sub-soil compaction level. In sub-soil zone, average root diameter decreased with the increase of sub-soil compaction level.  相似文献   

5.
A tillage depth control system for rotary implements mounted on an agricultural tractor was designed and constructed to improve accuracy of tillage depth. The control system was composed of five main units: (1) a detecting unit to measure the tilting angle (position) of the lift arm, the pitching angle of the tractor and heights of sensors from ground surface, (2) a controlling unit, (3) a hydraulic unit to operate a three-point hitch linkage by a lift arm cylinder, (4) a three-point hitch linkage and rotary implements, and (5) a setting unit to put the reference tillage depth and a dead zone into the control circuit. The tillage depth was controlled by an on/off operation of a solenoid valve, of which time was proportional to the controlling time. Experiments to evaluate the response characteristics of the control system were conducted under various engine speeds, i.e. various flow rates of hydraulic oil, various tillage depths and some input frequencies. The results of the response experiments of the control system are discussed in this paper.  相似文献   

6.
Field experiments on off-road vehicle traction and wheel–soil interactions were carried out on sandy and loess soil surfaces. A 14 T, 6 × 6 military truck was used as a test vehicle, equipped with 14.00-20 10 PR tyres, nominally inflated to 390 kPa. Tests were performed at nominal and reduced (down to 200 kPa) inflation pressures and at three vehicle loading levels: empty weight, loaded with 3.6 and 6.0 T mass (8000, 11,600 and 14,000 kg, respectively). Traction was measured with a load cell, attached to the rear of the test vehicle as well as to another, braking vehicle. Soil stress state was determined with the use of an SST (stress state transducer), which consists of six pressure sensors. Soil surface deformation was measured in vertical and horizontal directions, with a videogrammetric system. Effects of reduced inflation pressure as well as wheel loading on traction and wheel–soil interactions were analyzed. It was noticed that reduced inflation pressure had positive effects on traction and increased stress under wheels. Increasing wheel load resulted in increasing drawbar pull. These effects and trends are different for the two soil surfaces investigated. The soil surface deformed in two directions: vertical and longitudinal. Vertical deformations were affected by loading, while longitudinal were affected by inflation pressure.  相似文献   

7.
Tire tractive performance, soil behavior under the traffic, and multi-pass effect are among the key topics in the research of vehicle off-road dynamics. As an extension of the study (He et al., 2019a), this paper documents the testing of a tire moving on soft soil in the traction mode or towing mode, with a single pass or multiple passes, and presents the testing results mainly from the aspects of tire tractive performance parameters, soil behavior parameters, and multi-pass effect on these parameters. The influence of tire inflation pressure, initial soil compaction, tire normal load, or the number of passes on the test data has been analyzed; for some of the tests, the analysis was completed statistically. A multi-pass effect phenomenon, different from any phenomenon recorded in the available existing literature, was discovered and related to the ripple formation and soil failure. The research results of this paper can be considered groundwork for tire off-road dynamics and the development of traction controllers for vehicles on soft soil.  相似文献   

8.
This paper examines the effects of timber harvesting by skidding on some soil properties (sand, silt, clay, pH, organic carbon, bulk density and compaction), herbaceous cover (unit mass) and forest floor (unit weight) properties. Also N (%), P, K, Na, Ca, Mg, Fe, Zn, Cu and Mn (ppm) were determined in all herbaceous cover, forest floor and two soil depth (0–5 cm and 5–10 cm) on skidroad of an oak (Quercus petrea L.) stand in Istanbul Belgrad Forest – Turkey. In this study, obtained results are; the forest floor and the herbaceous cover amount on the skidroad have been found considerably lower than undisturbed area. There were some crucial changes in the characteristics of the soil which has been investigated down to 10 cm depth. Soil bulk density was found quite high in the samples taken from the skidroad subject to compaction compared to the ones on the undisturbed area. Nevertheless, no important difference had been detected between the skidroad and the undisturbed area at both soil depths in terms of organic carbon contents. Moreover, the soil acidity (pH) values showed noteworthy differences in the analysis of soil samples taken from both soil depths on the skidroad and on the undisturbed area. Fe and Cu contents of herbaceous samples on skidroad were significantly higher than undisturbed area. Forest floor on skidroad had significantly higher K content, and significantly lower Zn, Mn and N content compared to undisturbed area. P, Fe, Zn and Mn contents were found significantly lower in 0–5 cm soil depth on skidroad than undisturbed area. In 5–10 cm soil depth, concentrations of N, P, Fe, Zn and Mn were significantly lower, while Mg and Cu contents were significantly higher than undisturbed area. Results indicate that long-term harvest using skidding techniques on these sites had adversely affected soil cation concentrations, physical soil conditions and mass of herbaceous cover and forest floor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号