首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The ability of the muscular carnitine pool to accept and temporally donate acetyl groups (from and towards the coenzyme A pool) is an important functional role of carnitine within biological systems that is often overlooked within the scientific literature. The present review will discuss recent research demonstrating the existence of a period of inadequate acetyl-CoA delivery towards the tricarboxylic acid cycle (the so-called ‘acetyl group deficit’), which occurs as a consequence of the impaired integration of cytosolic (glycolysis) and mitochondrial energy producing pathways at the onset of muscular contraction; due to a lag in the activation of the pyruvate dehydrogenase complex. During this period of inadequate acetyl-CoA delivery, acetyl groups can be sequestered from the limited muscular acetylcarnitine reserve in an attempt to sustain continued tricarboxylic acid cycle flux. Following on from this, the present review will highlight the metabolic and functional benefits to be gained by overcoming this period of metabolic inertia, through elevating the concentration of acetylcarnitine prior to physical exercise; in the presence and absence of pyruvate dehydrogenase complex activation and through appropriately timed ‘warm-up’ exercise.  相似文献   

2.
Summary. Carnitine acyltransferases catalyse equilibria between acyl-CoA esters and the respective acylcarnitines. Therefore, they act not only as pathway enzymes, but also as modulators of acyl-CoA concentrations within individual sub-cellular compartments. Because acyl-CoA esters are potent biologically active metabolites, carnitine acyltransferase activities are potentially able to affect a diverse range of physiological processes, ranging from insulin secretion, to appetite control, and insulin sensitivity of tissues. The distinctive subcellular distributions of the different types of carnitine acyltransferases also enables them to participate in the transfer of acyl moieties across intracellular membranes, and of particular acylcarnitine esters across the plasma membrane and into the plasma. Pharmacological strategies that make use of these properties to improve cell function are discussed.  相似文献   

3.
Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.  相似文献   

4.
Interpreting high-resolution rovibrational spectra of weakly bound complexes commonly requires spectroscopic accuracy (<1 cm-1) potential energy surfaces (PES). Constructing high-accuracy ab initio PES relies on the high-level electronic structure approaches and the accurate physical models to represent the potentials. The coupled cluster approaches including single and double excitations with a perturbational estimate of triple excitations (CCSD(T)) have been termed the "gold standard" of electronic structure theory, and widely used in generating intermolecular interaction energies for most van der Waals complexes. However, for HCN-He complex, the observed millimeter-wave spectroscopy with high-excited resonance states has not been assigned and interpreted even on the ab initio PES computed at CCSD(T) level of theory with the complete basis set (CBS) limit. In this work, an effective three-dimensional ab initio PES for HCN-He, which explicitly incorporates dependence on the Q1 (C-H) normal-mode coordinate of the HCN monomer has been calculated at the CCSD(T)/CBS level. The post-CCSD(T) interaction energy has been examined and included in our PES. Analytic two-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for v1(C-H)=0, and 1 to the Morse/Long-Range potential function form with root-mean-square deviations (RMSD) smaller than 0.011 cm-1. The role and significance of the post-CCSD(T) interaction energy contribution are clearly illustrated by comparison with the predicted rovibrational energy levels. With or without post-CCSD(T) corrections, the value of dissociation limit (D0) is 8.919 or 9.403 cm-1, respectively. The predicted millimeter-wave transitions and intensities from the PES with post-CCSD(T) excitation corrections are in good agreement with the available experimental data with RMS discrepancy of 0.072 cm-1. Moreover, the infrared spectrum for HCN-He complex is predicted for the first time. These results will serve as a good starting point and provide reliable guidance for future infrared studies of HCN doped in (He)n clusters.  相似文献   

5.
The solvent‐ and catalyst free synthesis of two β‐thio ketones L1a and L1b is reported. L1a , L1b , and a β‐seleno ketone L1c were successfully employed as ligand precursors in the synthesis of a novel series of cationic titanium complexes 4a – 4c via a well‐established reaction sequence: insertion of the carbonyl functional group into the polarized Ti–Cq,exo bond of the monopentafulvene complex Cp*Ti(Cl)(π‐η5:σ–η1‐C5H4=CR2) ( 1 ) (CR2 = adamantylidene), subsequent methylation, and final activation with B(C6F5)3. The cationic titanium complexes 4a – 4c bear twofold functionalized cyclopentadienyl [Cp,O,Ch (Ch = S, Se)] ligand frameworks built directly in the coordination sphere of the metal, in which the chalcogen ether functionalities do not coordinate to the central metal atoms as demonstrated by NMR experiments. Consequently, Cp,O σ,π chelating ligand systems are formed with free coordination sites at the central titanium atoms and pendant chalcogen ether moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号