首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of pre-ionisation for the non-chain discharge-pumped HF laser is studied through experiments on an X-ray photo-triggered laser using mixtures of Ne, SF6, and ethane. The discharge dynamic in Ne/SF6 mixtures or pure SF6, as well as the stabilisation effect induced by C2H6 and consequences for the laser performance, are investigated for pre-ionisation electron density values, neo, ranging from 106 cm-3 up to 109 cm-3, as well as for the so-called discharge self-breakdown mode. Without ethane, the minimum neo value which is needed to complete 100% homogeneous charge deposition in the plasma is a very sharply increasing function of the SF6 pressure. This hinders performance optimisation when the molecule used to react with F-atoms, for instance H2, has no effect on the discharge dynamic. The minimum ethane partial pressure that is needed to stabilise the discharge depends on neo, the pumping pulse duration, the deposited electric charge, and the SF6 pressure. Discharges in Ne/SF6 can be much more efficiently stabilised by addition of a small amount of ethane than by an increase of neo. A pre-ionisation density as low as 106 cm-3 is sufficient to achieve the maximum laser energy value, but total suppression of the pre-ionisation has a detrimental effect on the active medium homogeneity. Received: 30 May 2000 / Revised version: 9 October 2000 / Published online: 9 February 2001  相似文献   

2.
《Physics letters. A》2014,378(26-27):1828-1833
The breakdown of gas gaps in an inhomogeneous electric field at subnanosecond and nanosecond voltage pulse rise times are studied, and the famous polarity effect in point-to-plane gaps is investigated. It is shown that at a voltage pulse rise time of ∼0.5 ns, the inversion of polarity effect takes place not only in electronegative gases such as SF6, but also occurs in electropositive nitrogen. The inversion of polarity effect is related to a delay of electron emission from the plane cathode on arrival of the ionization wave front anode to the cathode. It is found that with a voltage pulse rise time of ∼0.5 ns, the inversion of polarity effect occurs at SF6 and SF6–N2 pressures of 0.25 MPa and lower, and with a voltage pulse rise time of 15 ns, at a SF6 pressure lower than 0.12 MPa.  相似文献   

3.
For mass spectrometric measurements of δ31S, pure sulphur hexafluoride was prepared quantitatively from different mineral sulphides by the reaction with elemental fluorine under pressure. The results of δ31S measurements on SF6 samples were confirmed by comparison of δ31S values with the classical method leading to SO2. Numerous mass spectrometric measurements of SF6 and SO2 with regard to the experimental conditions of the synthesis, the influence of background, memory effect, and adsorption were made. The measurements of small isotopic variations of sulphur with SF6 has advantages in comparison to the SO2 technique. The method described can be successfully used for routine work.  相似文献   

4.
By using the hydrodynamic equations of positive and two negative ions, Boltzmann electron density distribution, and Poisson equation with immobile positive/negative dust particles, a cylindrical Korteweg-de Vries (CKdV) equation is derived for small but finite amplitude ion-acoustic waves. At the critical total negative ion concentration and/or the critical density rate of the second-negative ions, the pulses collapse at this limit as nonlinearity fails to balance dispersion. Then the CKdV equation is not appropriate to describe the system. Therefore, the modified CKdV (MCKdV) and extended CKdV (ECKdV) equations are derived at the critical plasma compositions and in the vicinity of the critical plasma compositions, respectively. The physical parameters of two plasma environments (e.g., Xe+–F-–SF6-_{6}^{-} and Ar+–F-–SF6-_{6}^{-} plasmas) are examined on the wave phase velocity and the nonlinear localized pulse profile. The latter should satisfy necessary condition to exist. The localized pulse of Ar+–F-–SF6-_{6}^{-} plasma is much spiky than Xe+–F-–SF6-_{6}^{-} plasma. Thus, the mass ratio of the negative-to-positive ions is focused upon and it emphasizes to play an important role on the pulse profile. Dependence of the geometrical divergence on the pulse profile is also investigated, which indicates that the localized pulse damps with time. The implications of our results agrees with the experimental observations.  相似文献   

5.
Low pressure SF6 with its isotopes in natural abundance was irradiated by a pulsed CO2 laser operated on theP20 line (10.6 μm band). Dissociation yields of32SF6 and34SF6 were measured separately. If the radiation is focussed into the cell, the dissociation yield is proportional to the 3/2 power of the laser energy, as was derived under general conditions and confirmed experimentally. The reaction probabilityP(Φ), the fraction of molecules dissociated by an energy flux Φ, was measured using parallel light. For both isotopes,P(Φ) saturates at high energy flux close toP=1. At a lower flux (2 J cm−2), the dissociation probability of32SF6 displays a threshold, whereas the dissociation probability of34SF6 is a very steep function of Φ over the whole range of fluxes.P(Φ) at the higher energy flux was measured in a cavity absorption cell, in which up to 80% of the molecules were dissociated by a single pulse. Below 0.2 mbar SF6 the dissociation yields for both isotopes are pressure independent. Above 2 mbar the isotopic selectivity is completely lost. Addition of hydrogen always decreases the dissociation yields.  相似文献   

6.
Simultaneous Q-switching and mode-locking in a laser-diode end-pumped intracavity frequency doubled Nd:YVO4/KTP green laser using Cr4+:YAG saturable absorber is experimentally demonstrated. The influence of the initial transmission (T0) of the Cr4+:YAG crystal on the Q-switched mode-locked green pulses as well as on the average green power is characterized by using Cr4+:YAG crystal with various T0. The effect of T0 on the pulse build-up time in intracavity second harmonic configuration is theoretically investigated. It was found that the depth of modulation for the mode-locked pulses is greatly improved at the second harmonic wavelength as compared to that for the fundamental wavelength. The average pulse duration of the individual mode-locked pulse for the second harmonic beam measured to be less than 500 ps with a repetition rate of 400 MHz.  相似文献   

7.
Using a pyroelectric detector, the multiple photon absorption (MPA) of the SF6 molecule in a wide range of pressures (10-3 -1 torr) has been studied. The significant role of collisions in MPA has been shown. The fraction of molecules excited under essentially collisionless conditions has been defined. It is shown that under collisionless excitation of SF6 (p < 10-2 torr) at energy fluences E < 10-1 J/cm2 the intensity of the laser pulse plays the essential role, while in presence of collisions MPA is determined mainly by the energy fluence in the pulse.  相似文献   

8.
The method of pulse duration control is proposed for intense molecular beams. The method is based on the shortening of a primary molecular-beam pulse through the formation of a pressure shock ahead of a solid surface through which the beam is passed. The method was used to obtain intense SF6, H2, He, SF6/H2 (1/10), and SF6/He (1/10) molecular beams with a pulse duration of ≤10?15 μs and a spatial length of ≤1?2 cm.  相似文献   

9.
6 in flow with Ar (SF6: Ar=1:100) in conditions of a large vibrational/rotational temperature difference (TV≃230 K, TR≃60 K) was studied at moderate energy fluences from ≃0.1 to ≃100 mJ/cm2, which are of interest for isotope selective two-step dissociation of molecules. A 50 cm Laval-type slit nozzle for the flow cooling, and a TEA CO2-laser for excitation of molecules were used in the experiments. The laser energy fluence dependences of the SF6 MPA were studied for several CO2-laser lines which are in a good resonance with the linear absorption spectrum of the ν3 vibration of SF6 at low temperature. The effect of the laser pulse duration (intensity) on MPA of flow cooled SF6 with Ar was also studied. The results are compared with those obtained in earlier studies. Received: 4 September 1995/Revised version: 15 February 1996  相似文献   

10.
Dissociation of 32SF6 and the resultant isotopic enrichment of 34SF6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry-independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.  相似文献   

11.
The dissociation probabilities of32SF6 and some of34SF6 have been measured at a large number of CO2 laser lines both at room temperature and at 140 K. The longwavelength wing of this dissociation spectrum is exponential in the wavenumber. Its logarithmic slope is proportional to the inverse temperature. Selectivities are high enough at 140 K, that the photons are consumed only for the rare isotope in the case of34SF6 and nearly so for36SF6. For33SF6 further improvement of the selectivity would be desirable.  相似文献   

12.
The current waveforms of the first negative corona pulses in a small point-to-plane gap have been measured with a nanosecond time resolution in N2 + SF6 and CO2 + SF6 mixtures at a pressure 50 kPa for various contents of SF6 as a function of applied gap voltages. The physical mechanism for the pulses in these mixtures with low concentration of SF6 has been described using the streamer-based theory. The influence of changing admixtures of SF6 in N2 and CO2 has been compared. Differences in the pulse waveforms observed in N2- and CO2-based gas mixtures are explained by differences in the first and second Townsend ionization coefficients. This work was supported by the Grant Agency VEGA from the Ministry of Education of Slovak Republic under contracts 1/1011/04 and 1/2017/05.  相似文献   

13.
In this paper, we report that mode-locked operation is realized in a flashlamp-pumped Nd:YAG laser with a nearly critical stable resonator, using LiF:F2 color center crystal as a modulation device. A single pulse train with the energy of 25 mJ and the pulse duration of 82 ps is obtained. Both the theoretical and experimental results have shown that the mode-locked operation has resulted from kerr-lens effect formed in combination with self-focusing within Nd:YAG and an aperture at a specific point, but not directly from the saturable absorption of LiF:F2 crystal.  相似文献   

14.
Using two variants of the Laser Photoelectron Attachment (LPA) method involving a differentially-pumped, seeded supersonic beam (0.05% and 12.5% of SF6 molecules in helium carrier gas, nozzle temperatures T0= 300–600 K, stagnation pressures p0= 1–5 bar) and mass spectrometric ion detection, we have investigated the energy dependence of anion formation in low-energy electron collisions with SF6 molecules at high energy resolution. Using the standard LPA method, the yield for SF6- as well as SF5- and F- anions was studied with an energy width around 1 meV over the electron energy range 0–200 meV. In addition, a variant of the LPA method with extended energy range (denoted as EXLPA) was developed and applied to measure the yield for SF6- and SF5- formation over the energy range 0–1.5 eV with an energy width of about 20 meV. The cross-section for formation of SF6- decreases by five orders of magnitude over the range 1–500 meV and is only weakly dependent on nozzle temperature. The yield for SF5- formation shows — apart from a weak zero energy peak which grows strongly with rising temperature — a broad maximum (located around 0.6 eV for T0= 300 K and shifting to lower energies with rising T0) and a monotonical decrease towards higher energies. SF5- attachment spectra taken at elevated temperatures exhibit changes with rising stagnation pressure which directly reflect rovibrational cooling of the SF6 molecules with rising pressure. The SF5-/SF6- intensity ratio at near-zero energy and the low-energy shape of the broad peak in the SF5- spectra are used as thermometers for the internal temperature of the SF6 molecules in the seeded supersonic beam which (at p0= 1 bar) are found to be 50–100 K lower than the nozzle temperature. The energy dependence of the yield for F- formation is similar to that for SF6-, but the F- signals are three to four orders of magnitude lower than those for SF6-; in view of the rather high endothermicity of F- formation the origin of the F- signals is discussed in some detail.  相似文献   

15.
The burning voltages of an intermediate pressure self-sustained volume discharge (SSVD) in SF6 and SF6-C2H6 mixtures irradiated by a 10.6 μm pulse TEA CO2 laser, have been measured on varying the laser fluences over a wide range. The delay between the voltage application and the laser pulse onset is 4 μs, and the laser pulse lasts ∼3 μs. The considerable rise observed in the discharge voltages with increasing absorbed specific laser radiation energy, is due to electron attachment to vibrationally excited molecules of SF6. Different processes of relaxation of the vibrational energy stored in SF6 molecules are analyzed and the relevant characteristic times are numerically assessed. The gas heating process owing to vibration-translation energy exchange is qualitatively described in terms of the “thermal explosion”. The relation between the “explosion” and delay times determines the peculiarities of electron attachment to vibrationally excited SF6 molecules. The burning voltages of a submicrosecond non-irradiated SSVD in the above-mentioned media versus the specific electric energy deposited are also measured. They are compared to those of a laser-illuminated SSVD at commensurable specific laser energy depositions. It is concluded that electron attachment to the discharge-produced vibrationally excited SF6 molecules is not capable of noticeably affecting the discharge voltages of a submicrosecond non-irradiated SSVD. PACS 42.55 Ks; 52.80  相似文献   

16.
We report on a diode-pumped passively mode-locked Nd:Gd0.64Y0.36VO4 laser with a Cr4+:YAG saturable absorber. Q-switched mode locking (QML) with 90% modulation depth was obtained. The peak power of the mode-locked pulse near the maximum of the Q-switched envelope was estimated to be about 1.7 MW at the pump power of 12 W. Besides QML, continuous-wave mode locking was also experimentally realized, for the first time to our knowledge, in the laser under a strong intracavity pulse energy fluence. The mode-locked pulse width is about 2.96 ps at a repetition rate of 161.3 MHz.  相似文献   

17.
ESR spectra of the ethylene radical cation were detected at cryogenic temperatures in SF6, C2F6 and C3F8. From the unusually small hyperfine couplings estimated for1H and13C, it has been shown that the ethylene radical cation has a non-planar structure with a torsional angle in the range of 8°–23°. Upon annealing the sample at a temperature above 93 K, the ethylene radical cation in SF6 changed into a monofluoroethyl radical through charge recombination with fluoride anion or SF 6 ? .  相似文献   

18.
A method of controlling the duration of pulses of intense molecular beams is suggested. The idea of the method is the shortening of an initial molecular beam pulse by producing a pressure shock in front of a solid surface through which the beam passes. Experiments on shortening H2, He, SF6, SF6/H2(1/10), and SF6/He(1/10) molecular beam pulses are reported. The parameters of the beams incident on, and transmitted through, the surface are studied. The gas density in the initial beam and in the pressure shock before the surface is estimated. The intensity and duration of shortened molecular pulses are found as a function of the initial intensity, angle of incidence, and the diameter of a hole on the surface through which the beam passes. It is established that the duration of the shortened beam decreases greatly with increasing incident intensity and decreasing hole diameter. It is shown that intense pulsed H2, He, SF6, SF6/H2(1/10), and SF6/He(1/10) molecular beams with a pulse duration of ≤10–15 μs and an extent of ≤1–2 cm can be generated with the method suggested.  相似文献   

19.
Simultaneous mode-locking and Q-switching has been accomplished in a diode-pumped Nd:YVO4/LiF:F2 - laser. At an absorbed pump power of 23.6 W, the average output power was 6.0 W and the repetition rate of the Q-switched pulse was 260 kHz. A depth of mode-locking of 100% was obtained and there was no satellite pulse between mode-locked pulse trains. The mode-locked pulse inside the Q-switched pulse had a repetition rate of approximately 148 MHz and its average duration was estimated to be around 75 ps. Received: 6 February 2001 / Revised version: 23 April 2001 / Published online: 18 July 2001  相似文献   

20.
The parameters of characteristic sulfur K α-rays generated from SF6 clusters that are surrounded by argon atoms and are irradiated by intense laser radiation have been analyzed. It has been found that the formation of large SF6 clusters under the optimum experimental parameters is accompanied by the high-efficiency generation of the characteristic X rays, and the flux density of the characteristic X-ray photons is 100 photons/(mrad2 pulse) at a laser-pulse energy of 5 mJ. It has been shown that the third-harmonic generation process can be used to characterize the spatial sizes of the gas-cluster jet and the region of the cluster plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号