首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative stabilities of the five conformers of allyl amine, a medium-size aliphatic molecule, were estimated by applying ab initio quantum mechanical methods at several levels of theory. The second-order M?ller-Plesset perturbation method (MP2), quadratic configuration interaction including single and double excitations (QCISD), coupled-cluster with single and double excitations (CCSD) and CCSD plus perturbative triple excitations [CCSD(T)] were applied. The Dunning correlation consistent basis sets (through aug-cc-pVQZ and cc-pV5Z) were employed. The MP2 energies relative to the energy of the cis-trans conformer reported here appear to approach the basis set limit. The predicted allyl amine conformer energies approaching the Hartree-Fock basis set limit are 158 cm-1 (cis-gauche), -5 cm-1 (gauche-trans), and -146 cm-1 (gauche-gauche). The same three relative energies near the MP2 basis set limit are 135, 103, and 50 cm-1, respectively. The analogous energies deduced from experiment are 173 +/- 12, 92 +/- 8, and 122 +/- 5 cm-1. The theoretical results obtained in the present study suggest that satisfactory predictions of the conformer energetics of allyl amine may be achieved only by theoretical methods that incorporate consideration of correlation effects in conjunction with large basis sets. Evaluation of the zero-point vibrational energy corrections is critical, due to the very small classical energy differences between the five conformers of allyl amine. Agreement between theory and experiment for the gauche-gauche conformational energy remains problematical.  相似文献   

2.
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.  相似文献   

3.
The structure of bis(trifluoromethanesulfonyl) imide (TFSI-) in the liquid state has been studied by means of Raman spectroscopy and DFT calculations. Raman spectra of 1-ethyl-3-methylimidazolium (EMI+) TFSI- show relatively strong bands arising from TFSI- at about 398 and 407 cm(-1). Interestingly, the 407 cm(-1) band, relative to the 398 cm(-1) one, is appreciably intensified with raising temperature, suggesting that an equilibrium is established between TFSI- conformers in the liquid state. According to DFT calculations followed by normal frequency analyses, two conformers of C2 and C1 symmetry, respectively, constitute global and local minima, with an energy difference 2.2-3.3 kJ mol(-1). The wagging omega-SO2 vibration appears at 396 and 430 cm(-1) for the C1 conformer and at 387 and 402 cm(-1) for the C2 one. Observed Raman spectra over the range 380-440 cm(-1) were deconvoluted to extract intrinsic bands of TFSI- conformers, and the enthalpy of conformational change from C2 to C1 was evaluated. The enthalpy value is in good agreement with that obtained by theoretical calculations. We thus conclude that a conformational equilibrium is established between the C1 and C2 conformers of TFSI- in the liquid EMI+TFSI-, and the C2 conformer is more favorable than the C1 one.  相似文献   

4.
2-Chloro-1,3,2-dioxaphosphorinane-2-oxide, -sulfide, and -selenide are studied with the help of DFT/B3LYP and several ab initio methods using a 6-311G** basis set. However, due to rather large relative energies of higher conformers in all three cases, the conformational equili-brium mixture contains more than 95% (see the preceding paper in this Journal) of the lowest chair-equatorial conformer (this indicates that the P=X bond is in the equatorial position), so we do not find any conformer bands in the experimental spectra and calculate our theoretical ones for the assignment only from the chair-equatorial conformer. The vibrational infrared and Raman spectra were calculated and are in fair agreement with their experimental counterparts. Potential energy distribution calculations are performed, and the theoretical modes where an experimental counterpart could be found to symmetry coordinates are assigned.  相似文献   

5.
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.  相似文献   

6.
Conclusions Employing the methods of vibrational spectroscopy, dipole moments, and the Kerr effect it was established that dichloromethylthiophosphonic dichloride exists in the liquid state and in solutions as an equilibrium of the two conformers with a gauche-gauche and gauche-trans orientation of the C-Cl and P=S bonds. The gauche-trans conformer is stabilized in the crystalline phase.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2355–2358, October, 1977.The authors express their gratitude to R. R. Shagidullin for valuable advice when discussing the data of the paper, and to T. A. Zyablikova for taking the NMR spectra.  相似文献   

7.
The Raman spectrum of liquid N-(fluorosulfonyl)imidosulfurous difluoride FSO2N = SF2 and the IR spectrum of its vapour phase were recorded. The observed features in combination with the theoretical studies indicate the existence at room temperature of only one conformer. In accord with previous results obtained by electron-diffraction analysis, this single conformer possesses C1 symmetry in which the SF2 group is oriented syn with respect to the N-S single bond. Theoretical vibrational spectra were also determined using ab initio and density functional theory (DFT) calculations at different levels of approximation. For all except one of the torsional modes, experimental wavenumbers were obtained. A subsequent normal coordinate analysis was performed using a torsional wavenumber calculated by theoretical methods.  相似文献   

8.
Density functional theory (DFT), using the B3-LYP/6-31G(d,p) method have been used to investigate the conformation and vibrational spectra of aminopropylsilanetriol (APST) NH2CH2CH2CH2Si(OH)3. The potential function for CCCSi torsion gives rise to two distinct conformers trans and gauche. The predicted energy of the more stable trans conformer is 337 cm-1 less than the energy of gauche conformer. The calculated barriers to the conformation interchange are: 1095, 2845 and 438 cm-1 for the trans to gauche, gauche to gauche and gauche to trans conformers, respectively. For the trans conformer the potential energy curve for the Si(OH)3 groups torsion in APST has been calculated changing the HOSiC dihedral angle. The barrier for the internal rotation of 3065 cm-1 has been obtained. The optimized molecular structure of APST dimer calculated for trans conformer has a SiOSi angle of 143.2 degrees, and a SiOSi bond length of 0.164 nm. A complete vibrational assignment for both conformers as well as for trans-dimer is supported by the normal coordinate analysis, calculated IR intensities as well as Raman activities. On the basis of the results, the vibrational spectra of APST aqueous solution and APST polymer have been analyzed. The average error between the observed and calculated frequencies is 14 cm-1.  相似文献   

9.
Variable temperature (-55 to -150 degrees C) studies of the infrared spectra (3200-100 cm(-1)) of cyclopropylmethyl isothiocyanate, c-C(3)H(5)CH(2)NCS, dissolved in liquefied rare gases (Xe and Kr), have been carried out. The infrared spectra of the gas and solid, as well as the Raman spectrum of the liquid, have also been recorded from 3200 to 100 cm(-1). By analyzing six conformer pairs in xenon solutions, a standard enthalpy difference of 228 +/- 23 cm(-1) (2.73 +/- 0.27 kJ.mol(-1)) was obtained with the gauche-cis (the first designation indicates the orientation of the CNCS group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCS group with respect to the bridging C-C bond) rotamer the more stable form, and it is also the only form present in polycrystalline solid. Given statistical weights of 2:1 for the gauche-cis and cis-trans forms (the only stable conformers predicted); the abundance of cis-trans conformer present at ambient temperature is 14 +/- 2%. The potential surface describing the conformational interchange has been analyzed, and the corresponding two-dimensional Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche-cis conformer is predicted to be more stable by 159-302 cm(-1), which is consistent with the experimental results. However, without diffuse functions, the conformational energy differences are nearly zero even with large basis sets. For calculations with density functional theory by the B3LYP method, basis sets without diffuse functions also predict smaller energy differences between the conformers, although not nearly as small as the MP2 results. A complete vibrational assignment for the gauche-cis conformer is proposed, and several fundamentals for the cis-trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable; the r(0) structural parameters are also estimated. The energies for the linear CNCS moiety were calculated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

10.
The structure of dl-serine.HCl was studied by three complementary techniques. Experimental Fourier transform infrared (FT-IR) spectra of pure NH/OH polycrystalline dl-serine.HCl [HO-CH2-CH(NH3+)-COOH.Cl(-)] and the respective deuterated derivatives [ND/ODAlcohol/Acid (<10% and ca. 60% D)] were recorded in the region 4000-400 cm(-1) in the temperature range 300-10 K and interpreted. The assignments were confirmed by comparison with the vibrational spectra of crystalline dl- and l-serine zwitterions [HO-CH 2-CH(NH3+)-COO(-)]. Further insight into the structure of the title compound was provided by theoretical DFT(B3LYP)/6-311++G(d,p) calculations of the infrared spectra and energies of 13 different conformers. Potential energy distributions resulting from normal co-ordinate analysis were calculated for the most stable conformer ( I) in its hydrogenated and deuterated modification. Frequencies of several vibrational modes were used in the estimation of enthalpies of individual H-bonds present in the crystal, using empirical correlations between enthalpy and the frequency shift that occurs as a result of the establishment of the H-bonds. X-ray crystallography data for dl-serine.HCl were recorded for the first time and, together with the experimental vibrational spectra and the theoretical calculations, allowed a detailed characterization of its molecular structure.  相似文献   

11.
The structures and conformational stabilities of phenylphosphonic and phenylthiophosphonic acids are investigated using calculations mostly at the DFT/6-311G** level and ab initio ones at the MP2/6-311G** level (no frequency calculations in the latter case), because we know from our previous results that the addition of diffuse functions to a valence triple zeta basis with polarization functions might lead to an unbalanced basis set. Further, the experience tells that for large energy differences between conformers, DFT works very well. From the calculations the molecules are predicted to exist in a conformational equilibrium consisting of two non (near)-planar conformers that are identical by symmetry. Interestingly, in the internal rotation potential functions the planar conformer appears to be a stable minimum (also optimization converges to planar), however the vibrational frequencies were computed and the planar conformer exhibited an imaginary one, indicating that it is a maximum with respect to one of the internal coordinates. Only optimization without any restrictions and starting from a non (near)-planar structure converged to a real minimum with a non (near)-planar geometry. In the minimum structure, vibrational infrared and Raman spectra are calculated and those for phenylphosphonic acid are compared to experimental ones, showing satisfactory agreement. The rather low intensity of the OH bands in the experimental infrared spectrum (as compared to normal organic acids) indicates rather weak hydrogen bonding with at most dimers present. Normal coordinate calculations are carried out and potential energy distributions are calculated for the molecules in the non (near)-planar conformations providing a complete assignment of the vibrational modes to atomic motions in the molecules. From the rather low rotational barriers we conclude, in agreement with the results from the literature (for other P=O compounds) based on localized orbitals, that conjugation effects are absent — or at least negligible — as compared to electrostatic and steric ones.  相似文献   

12.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

13.
The infrared spectra of meso-2,4-pentanediol and racemic-2,4-pentanediol were measured in an argon matrix at 20 K. The Raman spectra of the pure liquids (meso and racemic) were measured at room temperature. The spectra were obtained using a Fourier transform spectrophotometer and a cryostat for the low temperature matrix. The meso and racemic forms of the diol were separated by means of a spinning band distillation column. The energies of nine possible conformers of the meso form and nine conformers of the racemic form were calculated. Extensive ab initio calculations using B3LYP, MP2 and HF methods with several basis sets consistently gave the lowest energy for the TT conformer of the meso form and the GT (=TG) conformer of the racemic form. Ab initio calculations at the B3LYP/6-31G** level were performed for the lowest energy conformer of meso and racemic pentanediol to obtain the equilibrium geometry, vibrational frequencies, and infrared and Raman intensities. Calculated and experimental frequencies were compared to make vibrational assignments.  相似文献   

14.
The infrared spectra (3200-400 cm(-1)) of krypton solutions of 1,3-difluoropropane, FCH2CH2CH2F, at variable temperatures (-105 to -150 degrees C) have been recorded. Additionally, the infrared spectra (3200-50 cm(-1)) of the gas and solid have been recorded as well as the Raman spectrum of the liquid. From a comparison of the spectra of the fluid phases with that in the solid, all of the fundamental vibrations of the C2 conformer (gauche-gauche) where the first gauche indicates the form for one of the CH2F groups and the second gauche the other CH2F, and many of those for the C1 form (trans-gauche) have been identified. Tentative assignments have been made for a few of the fundamentals of the other two conformers, i.e. C2v (trans-trans) and Cs (gauche-gauche'). By utilizing six pairs of fundamentals for these two conformers in the krypton solutions, an enthalpy difference of 277 +/- 28 cm(-1) (3.31 +/- 0.33 kJ mol(-1)) has been obtained for the C2 versus C1 conformer with the C2 conformer the more stable form. For the C2v conformer, the enthalpy difference has been determined to be 716 +/- 72 cm(-1) (8.57 +/- 0.86 kJ mol(-1)) and for the Cs form 971 +/- 115 cm(-1) (11.6 +/- 1.4 kJ mol(-1)). It is estimated that there is 64 +/- 3% of the C2 form, 34 +/-3% of the C1 form, 1% of the C2v form and 0.6% of the Cs conformer present at ambient temperature. Equilibrium geometries and total energies of the four stable conformers have been determined from ab initio calculations with full electron correlation by the perturbation method to second order as well as by hybrid density functional theory calculations with the B3LYP method using a number of basis sets. The MP2 calculations predict the C1 conformer stability to be slightly higher than the experimentally determined value whereas for the C2v and Cs conformers the predicted energy difference is much larger than the experimental value. The B3LYP calculations predict a better energy difference for both the C1 and C2v as well as for the Cs conformers than the MP2 values. A complete vibrational assignment is proposed for the C2 conformer and many of the fundamentals have been identified for the C1 form based on the force constants, relative intensities and rotational-vibrational band contours obtained from the predicted equilibrium geometry parameters. By combining previously reported rotational constants for the C2 and C1 conformers with ab initio MP2/6-311 + G(d, p) predicted parameters, adjusted r0 parameters have been obtained for both conformers. Comparisons are made with the parameters obtained for some other molecules containing the FCH2 group. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

15.
Variable temperature (-115 to -155 degrees C) studies of the infrared spectra (3200-400 cm-1) of 4-fluoro-1-butene, CH2=CHCH2CH2F, dissolved in liquid krypton have been carried out. The infrared spectra of the gas and solid as well as the Raman spectra of the gas, liquid, and solid have also been recorded from 3200 to 100 cm-1. From these data, an enthalpy difference of 72 +/- 5 cm-1 (0.86 +/- 0.06 kJ x mol-1) has been determined between the most stable skew-gauche II conformer (the first designation refers to the position of the CH2F group relative to the double bond, and the second designation refers to the relative positions of the fluorine atom to the C-C(=C) bond) and the second most stable skew-trans form. The third most stable conformer is the skew-gauche I with an enthalpy difference of 100 +/- 7 cm-1 (1.20 +/- 0.08 kJ x mol-1) to the most stable form. Larger enthalpy values of 251 +/- 12 cm-1 (3.00 +/- 0.14 kJ x mol-1) and 268 +/- 17 cm-1 (3.21 +/- 0.20 kJ x mol-1) were obtained for the cis-trans and cis-gauche conformers, respectively. From these data and the relative statistical weights of one for the cis-trans conformer and two for all other forms, the following conformer percentages are calculated at 298 K: 36.4 +/- 0.9% skew-gauche II, 25.7 +/- 0.1% skew-trans, 22.5 +/- 0.2% skew-gauche I, 10.0 +/- 0.6% cis-gauche, and 5.4 +/- 0.2% cis-trans. The potential surface describing the conformational interchange has been analyzed and the corresponding two-dimensional Fourier coefficients were obtained. Nearly complete vibrational assignments for the three most stable conformers are proposed and some fundamentals for the cis-trans and the cis-gauche conformers have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared, and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable. The adjusted r0 structural parameters have been determined by combining the ab initio predicted parameters with previously reported rotational constants from the microwave data. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

16.
The conformational behavior and structural stability of dichloro and difluoromethyl-sulfonyl isocyanates were investigated by quantum mechanical DFT and ab initio calculations. The 6-311 + + G** basis set was employed to include polarization and diffuse functions in the calculation at B3LYP and MP2 levels. The molecules were found to exist in a mixture of trans-gauche and gauche-gauche conformations at ambient temperatures. From the calculations the isocyanate NCO moiety was predicted to nearly eclipse one of the sulfony S=O bonds in the two stable conformers of both molecules. The potential scans for the rotations of the two NCO and CX2H rotors were calculated from which the rotational barriers could be estimated. The vibrational frequencies, potential energy distributions, IR intensities as well as depolarization ratios were calculated.  相似文献   

17.
A systematic investigation of the conformational potential energy surface of neutral serine [HOCH2CHNH2COOH] and 3,3-dideutero-serine [HOCD2CHNH2COOH] was undertaken, revealing the existence of 61 different minima. The structures and vibrational spectra of the most stable conformers, which were estimated to have relative energies within 7 kJ mol(-1) and account for ca. 93% of the total conformational population at room temperature, were calculated at both the MP2 and DFT/BLYP levels of theory with the 6-311++G(d,p) basis-set and used to interpret the spectroscopic data obtained for the compounds isolated in low-temperature inert matrixes. The assignment of the main spectral infrared features observed in the range 4000-400 cm(-1) to the most stable conformers of serine was undertaken. In addition, UV irradiation (lambda > 200 nm) of the matrix-isolated compounds was also performed, leading to decarboxylation, which was found to be strongly dependent on the conformation assumed by the reactant molecule.  相似文献   

18.
Raman spectra of liquid 1-ethyl-3-methylimidazolium (EMI+) salts, EMI(+)BF4-, EMI(+)PF6-, EMI(+)CF3SO3-, and EMI(+)N(CF3SO2)2-, were measured over the frequency range 200-1600 cm(-1). In the range 200-500 cm(-1), we found five bands originating from the EMI+ ion at 241, 297, 387, 430, and 448 cm(-1). However, the 448 cm(-1) band could hardly be reproduced by theoretical calculations in terms of a given EMI+ conformer, implying that the band originates from another conformer. This is expected because the EMI+ involves an ethyl group bound to the N atom of the imidazolium ring, and the ethyl group can rotate along the C-N bond to yield conformers. The torsion energy for the rotation was then theoretically calculated. Two local minima with an energy difference of ca. 2 kJ mol(-1) were found, suggesting that two conformers are present in equilibrium. Full geometry optimizations followed by normal frequency analyses indicate that the two conformers are those with planar and nonplanar ethyl groups against the imidazolium ring plane, and the nonplanar conformer is favorable. It elucidates that bands at 241, 297, 387, and 430 cm(-1) mainly originate from the nonplanar conformer, whereas the 448 cm(-1) band does originate from the planar conformer. Indeed, the enthalpy for conformational change from nonplanar to planar EMI+ experimentally obtained by analyzing band intensities of the conformers at varying temperatures is practically the same as that evaluated by theoretical calculations. We thus conclude that the EMI+ ion exists as either a nonplanar or planar conformer in equilibrium in its liquid salts.  相似文献   

19.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

20.
The infrared and Raman spectrum of 1-bromo-3-fluoropropane is reported in the gas, liquid, amorphous solid and annealed polycrystalline states. Only one of the five possible conformers is stable in the crystal, designated the C conformer. The disordered phases show the presence of several other conformers of higher energy, due entirely to conformers designated B and D. Ab initio calculations were performed as rhf/4-31g*/MIDI-4*, rhf/6-31g* and mp2/6-31g* (both frozen core and full electron correlation) for all five conformers. The scaled harmonic force field obtained using the mp2 = full/6-31g* level of the theory is reported for the most stable conformer together with an assignment of fundamentals and potential energy distributions for local symmetry coordinates. Selected computational results are reported for all conformers together with scaled and unscaled wavenumbers and infrared and Raman intensities. The temperature dependent Raman spectrum is reported from room temperature to -100 degrees C. Only three of the five possible conformers can be identified in this spectrum, and there is no evidence of the other two. The energy differences between conformers in the liquid phase were found experimentally to be 132+/-27, 232+/-46 and 106+/-30 cm(-1), respectively between the D and C, B and C and D and B conformers. These differences are substantially less than the differences calculated ab initio at the highest level of the theory used, suggesting that energy differences were decreased by large dipole-dipole interactions present in the liquid but not in the gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号