首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Recently, multi-wall carbon nanotubes (MWCNTs) as adsorbents of solid-phase extraction are attractive because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, we use the carboxyl modified multi-wall carbon nanotubes (CMMWCNTs) as adsorbents of solid-phase extraction for extraction of linear alkylbenzene sulfonates (LAS), which are widely used anion surfactant with different homologues, and detected by HPLC-UV. The effect of eluent and its volume, sample pH and flow rate, sample volume and the ultrasonic time of sample, the content of the electrolyte (NaCl) were investigated and optimized. The detection limit for LAS homologues was 0.02-0.03 μg L−1 with R.S.D. (n = 6) ranging from 2.04 to 10.03%. The recoveries of LAS homologues in the spiked environmental water samples ranged from 84.8 to 106.1%. The proposed method has been applied successfully to the analysis of LAS in aqueous environmental samples, which demonstrates that CMMWCNTs-based solid-phase extraction is a precision and convenient enrichment method and can be used for analysis of LAS homologues in water samples.  相似文献   

2.
A sensitive and selective column adsorption method is proposed for the preconcentration and determination of diazinon. Diazinon was preconcentrated on multiwalled carbon nanotubes (MWCNTs) as an adsorbent and then determined by high-performance liquid chromatography (HPLC). Several parameters on the recovery of the analyte were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 6 using 200 mL of validation solution containing 2 μg of diazinon and 5 mL of acetonitrile as an eluent. Recovery of diazinon was 95.2 ± 4.2% with a relative standard deviation for seven determinations of 4.9% under optimum conditions. The maximum preconcentration factor was 200 for diazinon when 1000 mL of sample solution volume was used. The linear range of calibration curve was 0.3 to 10,000 ng mL− 1 with a correlation coefficient of 0.997 and the detection limit (3S/N) was 0.06 ng mL− 1. The proposed method was successfully applied to the determination of diazinon in tap water with high precision and accuracy.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) were used as a novel kind of solid-phase extraction adsorbents in this work as well as an analytical method based on MWCNTs solid-phase extraction (SPE) combined with high-performance liquid chromatography (HPLC) was established for the determination of polycyclic aromatic hydrocarbons (PAHs), some of which belong to typical persistent organic pollutants (POPs) owing to their carcinogenicity and endocrine disrupting activity. Several conditions that probably affected the extraction efficiency including the eluent volume, sample flow rate, sample pH and the sample volume were optimized in detail. The characteristic data of analytical performance were determined to investigate the sensitivity and precision of the method, and the method was applied to the determination of PAHs in environmental water samples such as river water sample, tap water sample and wastewater sample from the constructed wetland effluent. The experimental results indicated that there were excellent linear relationship between peak area and the concentration of PAHs over the range of 0.04-100 microg L(-1), and the precisions (RSD) were 1.7-4.8% under the optimal conditions. The detection limits of proposed method for the studied PAHs were 0.005-0.058 microg L(-1) (S/N=3). The recoveries of PAHs spiked in environmental water samples ranged from 78.7 to 118.1%. It was concluded that MWCNTs packed cartridge coupled with HPLC was an excellent alternative for the routine analysis of PAHs at trace level.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNs) are used as adsorbent for solid-phase extraction (SPE) of several chlorophenols (CPs). CPs were adsorbed on MWCNs cartridge, then desorbed with pH 10.0 methanol, finally determined by HPLC. Under the optimized conditions, detection limits of 0.08-0.8 ng mL(-1) were obtained. The method had been applied to analyze the five CPs in tap water and river water.  相似文献   

5.
A new, simple and cost-effective method based on the use of multi-walled carbon nanotubes (MWCNTs) as solid-phase extraction stationary phases is proposed for the determination of a group of seven organophosphorus pesticides (i.e. ethoprophos, diazinon, chlorpyriphos-methyl, fenitrothion, malathion, chlorpyriphos and phosmet) and one thiadiazine (buprofezin) in different kinds of soil samples (forestal, ornamental and agricultural) using gas chromatography with nitrogen phosphorus detection. Soils were first ultrasound extracted with 10 mL 1:1 methanol/acetonitrile (v/v) and the evaporated extract redissolved in 20 mL water (pH 6.0) was passed through 100 mg of MWCNTs of 10-15 nm o.d., 2-6 nm i.d. and 0.1-10 μm length. Elution was carried out with 20 mL dichloromethane. The method was validated in terms of linearity, precision, recovery, accuracy and selectivity. Matrix-matched calibration was carried out for each type of soil since statistical differences between the calibration curves constructed in pure solvent and in the reconstituted soil extract were found for most of the pesticides under study. Recovery values of spiked samples ranged between 54 and 91% for the three types of soils (limits of detection (LODs) between 2.97 and 9.49 ng g−1), except for chlorpyrifos, chlorpyrifos-methyl and buprofezin which ranged between 12 and 54% (LODs between 3.14 and 72.4 ng g−1), which are the pesticides with the highest soil organic carbon sorption coefficient (KOC) values. Using a one-sample test (Student's t-test) with fortified samples at two concentration levels in each type of soil, no significant differences were observed between the real and the experimental values (accuracy percentages ranged between 87 and 117%). It is the first time that the adsorptive potential of MWCNTs for the extraction of organophosphorus pesticides from soils is investigated.  相似文献   

6.
The sulfonamides (SAs) have been widely used as effective chemotherapeutics and growth promoters in animals' feeding, but their residues could be a potential danger to human health due to their carcinogenic potency and possible antibiotic resistance. Development of a simple and sensitive method for the determination of SAs residues in food of animal origin, therefore, is of great significance. An on-line solid-phase extraction (SPE) method using multiwalled carbon nanotubes as sorbent coupled with high-performance liquid chromatography (HPLC) for simultaneous determination of 10 sulfonamides (SAs) in eggs and pork was developed. The adsorptive potential of carbon nanotubes for solid-phase extraction of sulfonamides was investigated for the first time in the present paper. To on-line interface solid-phase extraction with HPLC, a conventional sample loop on the six-port injector valve of the HPLC was replaced by a preconcentration column packed with carbon nanotubes. The analytes in water solution were preconcentrated onto the preconcentration column and subsequently eluted with mobile phase of methanol-water (22:78). The developed on-line solid-phase extraction method for HPLC permitted the current HPLC separation and the next preconcentration proceeded in parallel, and thus allows one determination finished within 35 min. The RSD of 10 SAs for nine replicate measurements of a standard mixture of 1 microgl(-1) were in the range of 2.5-7.8%. The method was applied to the determination of trace sulfadiazin (SDZ), sulfamerazine (SMR), sulfadimidine (SDMD), sulfathiazole (STZ), sulfamoxol (SMO), sulfamethizole (SMT), sulfamethoxypyridazine (SMP), sulfachlorpyridazine (SCP), sulfadoxin (SDX) and sulfisoxazole (SIA) in eggs and pork. The results indicated that the proposed method was simple, cost-effective and sensitive.  相似文献   

7.
Summary On-line solid-phase extraction (SPE) coupled with reversed-phase liquid chromatography and UV detection at 254 nm has been used for the determination of trace-level polycyclic aromatic hydrocarbons (PAH) in soil extracts. Five commercially available adsorbents (C8, C18, PLRP-S, PRP-1, and Bond-Elut Env) were evaluated. Results showed that recovery of the PAH decreased with increasing molecular weight, because of their poorer solubility. Recovery of high-molecular-weight PAH was significantly improved by addition of 10% (v/v) acetonitrile to the sample before loading of the SPE adsorbent. PAH recovery ranged from 64.0 to 108% when a 50 mL sample spiked with 1 μg L−1 was applied to these adsorbents. Determination of PAH was possible with detection limits below 0.05 μg L−1, which corresponds to 0.2 μg kg−1 soil. The method was successfully used to determine PAH in soil extracts.  相似文献   

8.
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed.  相似文献   

9.
Huang  Ke-Jing  Han  Cong-Hui  Han  Chao-Qun  Li  Jing  Wu  Zhi-Wei  Liu  Yan-Ming 《Mikrochimica acta》2011,174(3-4):421-427
Microchimica Acta - We describe a method for solid-phase extraction of biogenic thiols using multi-walled carbon nanotubes as adsorbent, and their subsequent determination via HPLC and fluorescence...  相似文献   

10.
The aim of this work was to investigate the efficiency of various MWCNTs as SPE materials for the preconcentration of chlorophenols. The COOH-functionalized MWCNTs and MWCNTs were used as SPE sorbents. To evaluate the capability of MWCNTs for the preconcentration of chlorophenols from water samples, 2,4-chlorophenol, 4-chlorophenol, 2,4,6-chlorophenol, 2,6-chlorophenol, 3,4-chlorophenol, and 2-chlorophenol were used as model compounds. Chlorophenols were extracted with acetone, methanol, ethanol, and dichloromethane, and determined by gas chromatography–mass spectrometry. COOH-functionalized MWCNTs <8 nm were found to be the best sorbent for the tested chlorophenols. For COOH-functionalized MWCNTs <8 nm, the recovery rates for all chlorophenols were higher than 50% when acetone or ethanol was used as eluents. In the case of dichloromethane elution, recovery rates for chlorophenols were from 62.0% for 2,6-DCP to 116.8% for 2,4-DCP; only for 2,4,6-TCP was the recovery rate 30.6%. Similar percentage recoveries were achieved with methanol as the eluent.  相似文献   

11.
A method was developed for the determination of tylosin in feeds. The method involves extraction of tylosin with methanol, concentration under a stream of nitrogen, and cleanup using Phenomenex C18 solid-phase extraction cartridge. Analyte separation and quantitation were achieved by gradient reversed-phase liquid chromatography and UV absorbance at 285 nm with a reference wavelength of 320 nm with column temperature of 45 degrees C. Average spike recoveries for samples prepared at 4 spiking levels (22.7, 181, 907, and 1000 g/ton) were 111.0, 94.9, 96.2, and 98.6%, respectively. The overall method precision at each of the 4 spiking levels was < or = 7.85% relative standard deviation. The limits of detection and quantitation (g/ton) were 2.16 and 7.20 g/ton, respectively.  相似文献   

12.
Multiwalled carbon nanotube (MWCNT) was developed as a new sorbent for solid-phase extraction (SPE) of organophosphate (OP) pesticides. A combination of SPE with square-wave voltammetric (SWV) analysis resulted in a fast, sensitive, and selective electrochemical method for determination of OP pesticide using methyl parathion (MP) as a representative. Because of the strong affinity of MWCNT for phosphoric group, nitroaromatic OP compounds can strongly bind to the MWCNT surface. The macroporosity and heterogeneity of MWCNT allow extracting a large amount of MP less than 5 min. The stripping response was highly linear over the MP range of 0.05–2.0 μg/mL, with a detection limit of 0.005 μg/mL. The determination of MP in garlic samples showed acceptable accuracy. The fast extraction ability of MWCNT makes it promising sorbent for various solid-phase extractions.  相似文献   

13.
A sensitive and selective preconcentration method using solid-phase extraction (SPE) disk, namely multiwalled carbon nanotubes (MWCNTs) disk, is proposed for the determination of atrazine and simazine in water samples. Atrazine and simazine were extracted on MWCNTs disk and then determined by gas chromatography–mass spectrometry (GC/MS). Several parameters on the enrichment factor of the analytes were investigated. The experimental results showed that it was possible to obtain quantitative analysis when the solution pH was 5 using 200 mL of validation solution containing 0.1 μg of triazines and 5 mL of acetone as an eluent. The maximum enrichment factors for atrazine and simazine were 3900 ± 250 and 4000 ± 110, respectively when 200 mL of sample solution volume was used. Relative standard deviations for seven determinations were 6.9% (atrazine) and 3.0% (simazine) under optimum conditions. The linear range of calibration curves were 0.1 to 1 ng mL− 1 for each analyte with good correlation coefficients. The detection limits (3S/N) were 2.5 and 5.0 pg mL− 1 for atrazine and simazine, respectively. The proposed method was successfully applied to the determination of atrazine and simazine in environmental water samples with high precision and accuracy.  相似文献   

14.
Carbon nanotubes (CNTs) are a kind of new carbon-based nano-materials which have drawn great attention in many application fields. The potential of multi-walled carbon nanotubes (MWNTs) as solid-phase extraction (SPE) adsorbents for the preconcentration of environmental pollutants has been investigated in recent years. The goal of this work was to investigate the feasibility of MWNTs used as SPE adsorbents to enrich dichlorodiphenyltrichloroethane (DDT) and its metabolites including 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethane (DDE) at trace level which are typical persistent organic pollutants in environment. Parameters that maybe influence the extraction efficiency such as the eluent volume, sample flow rate, sample pH and the sample volume were optimized in detail. The experimental results showed the excellent linear relationship between peak area and the concentration of DDT and its metabolites over the range of 0.2-60 microg L(-1), and the precisions (RSD) were 2.3-2.5% under the optimal conditions. The detection limits of proposed method could reach 4-13 ng L(-1) based on the ratio of chromatographic signal to base line noise (S/N = 3). Satisfied results were achieved when the proposed method was applied to determine the four target compounds in realworld water samples with spiked recoveries over the range of 89.7-115.5%. All these facts indicated that MWCNTs as SPE packing materials coupled to HPLC was an excellent alternative for the routine analysis of DDT and its metabolites at trace level in environment.  相似文献   

15.
Multiwalled carbon nanotubes (MWCNTs) have been employed for the first time as sorbents for the isolation of basic proteins from other protein species in biological sample matrices by solid-phase extraction (SPE). A microcolumn packed with MWCNTs was incorporated after appropriate pretreatment into a sequential injection system, which facilitates online selective sorption of basic protein species (hemoglobin and cytochrome c in this particular case). The retained protein species were afterwards separated from each other by sequential elution from the microcolumn through the employment of appropriate eluents. A 0.025 mol L(-1) phosphate buffer solution of pH 8.0 facilitated the efficient collection of hemoglobin, while a 0.5 mol L(-1) NaCl solution ensured the quantitative recovery of the retained cytochrome c. With a sample loading volume of 2.0 mL, enrichment factors of 11 and 15 were derived for hemoglobin and cytochrome c, along with retention efficiencies of 100% for both species and recovery rates of 98 and 90%, respectively. A sampling frequency of 8 h(-1) was achieved, and the precisions were 3.0% and 0.8% (RSD) for hemoglobin and cytochrome c at a concentration of 5.0 microg mL(-1). The practical applicability of this system was demonstrated by processing of human whole blood for isolation of hemoglobin, and satisfactory results were obtained by assay with SDS-PAGE.  相似文献   

16.
A systematic method for separation of aged red wine polyphenols into various distinct fractions using combined techniques of solid-phase extraction and liquid chromatography was proposed. The aged red wine polyphenols were separated into various distinct fractions including phenolic acid fraction, monomer flavanol fraction, oligomer procyanidin fraction, anthocyanin and its pyruvic acid derivative fraction, free or non-colored proanthocyanidin fraction, fraction of direct condensation products between anthocyanins and proanthocyanidins and fraction of other pigmented complexes. The phenolic composition of each fraction was verified by HPLC with diode array detection (HPLC-DAD), thiolysis, vanillin assay, HPLC coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) and multi-stage MS fragment analysis. For the first time, anthocyanins and their pyruvic derivatives were separated from other phenolic compounds, while free or non-pigmented polymer proanthocyanidins from other pigmented complexes. The fractionation method would be of particular interest in further studying the detailed composition of polymeric polyphenols in red wine.  相似文献   

17.
A liquid chromatographic method was developed for the determination of penicillin G in feeds. The method involves extraction of penicillin G with methanol, concentration under a stream of nitrogen, and cleanup using Phenomenex Strata-X solid-phase extraction cartridge. Analyte separation and quantification were achieved by gradient reversed-phase liquid chromatography and ultraviolet absorbance at 230 nm. Average spike recoveries for samples prepared at 3 spiking levels (25, 50, and 200 g/ton) were 96.3, 92.1, and 88.6%, respectively. The overall method precision at each of the 3 spiking levels was < or = 5.39% relative standard deviation. The limits of detection and quantititation (g/ton formulation) were 3.89 and 13.0 g/ton, respectively.  相似文献   

18.
The use of macroporous silica gels, silochroms, with homogeneous geometrical structure as adsorbents and supports for liquid stationary phases in liquid chromatography is described.

The selectivity of separation and retention volumes of silochroms depend strongly on the degree of hydroxylation of the surface and on the nature of the mobile phase. In optimizing the parameters, rapid and complete separation of strongly polar isomers and biological active substances and drugs is obtained.

The dependence of retention volumes and column efficiency on the amount of liquid phase, covered on silochrom, has been investigated.  相似文献   


19.
Ma X  Li Q  Yuan D 《Talanta》2011,85(4):2212-2217
The commercial solid phase microextraction (SPME) fibers are not stable enough in organic solvent and tend to swell and strip off from the silica fiber in the high performance liquid chromatography (HPLC) mobile phase, and therefore the application of SPME coupled online with HPLC is limited. In this study, an SPME fiber coated with single walled carbon nanotubes (SWCNTs), prepared by means of electrophoretic deposition, was coupled on line to HPLC for the determination of four endocrine-disrupting compounds, i.e. bisphenol A (BPA), estrone (E1), 17α-ethynylestradiol (EE2) and octylphenol (OP), in aqueous samples. The results showed that the SWCNTs coating on the prepared fiber did not swell and strip off from the platinum fiber throughout the experiment, thus indicating a high resistance to the HPLC mobile phase, the mixture of water and acetonitrile. The SWCNTs fiber had similar (for OP) or higher (for BPA, EE2 and E1) extraction efficiencies than the commonly used polyacrylate fiber, and had a lifetime of more than 120 operation times. Under the optimized conditions, the linearity of the proposed method was 1.0-30.0 μg/L for BPA and OP and 3.0-90.0 μg/L for E1 and EE2. The limits of detection (LODs; S/N = 3) and limits of quantification (LOQs; S/N = 10) of the method were 0.32-0.52 μg/L and 1.06-1.72 μg/L, respectively. Repeatability for one fiber (n = 3) was in the range of 1.3-7.1% and fiber-to-fiber reproducibility (n = 3) was in the range of 1.6-8.4%. The proposed method was successfully applied for the analysis of spiked tap water and seawater samples with recoveries from 81.8 to 97.3%.  相似文献   

20.
A solid-phase extraction (SPE) method followed by a reversed-phase high-performance liquid chromatography (HPLC) procedure is reported for the assay of a wide polarity range acaricide residues in honey. After selection of suitable chromatographic and detection conditions, most steps of the SPE procedure that may affect to the recovery were investigated. Honey sample was buffered at pH 6 and then applied to the preconditioned C18 sorbent. A washing step was performed with 1 ml of a mixture of tetrahydrofuran (THF)–phosphate buffer (10:90, v/v) and finally, the analytes were eluted with 1 ml of THF. The extract was evaporated to dryness, reconstituted in mobile phase and chromatographed on a reversed-phase C18 column with diode array detection. The recoveries of the more polar acaricides were higher than 80% and 60–70% for the more apolar ones. Limits of detection obtained ranged from 1 to 200 ng/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号