首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between cellulose surfaces in aqueous solution has been measured using colloidal probe microscopy. Cellulose thin films with varying charge through carboxyl group substitution were used in this study with the surface forces fit to DLVO theory. It was found that the surface potential increased, as expected, with increasing carboxyl substitution. Furthermore, for a given degree of substitution, the surface potential increased as a function of increasing pH. At low pH, the surface forces interaction were attractive and could be fit to the non-retarded Hamaker equation using a constant of 3 x 10(-21) J. At pH greater than 5, the force interactions were monotonically repulsive, regardless of the ionic strength of the solution for all charge densities of the cellulose thin films. The adsorption of polyDADMAC to these charged cellulose films was also investigated using the quartz crystal microbalance. It was found that for the low charge film, a low surface excess of PDADMAC was sensed and that the adsorbed conformation was essentially flat. However for the higher charged cellulose film, a spontaneous de-swelling was observed resulting in no possibility of quantitatively determining the sensed mass using QCM.  相似文献   

2.
Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH-capped films. Wherever possible, DLVO theory was used to fit the measured surface forces and apparent surface potentials and surface charge densities were calculated.  相似文献   

3.
Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reveals agglomeration of CBD adsorbed on cellulose surface. Despite an increase in surface charge owing to CBD binding to cellulose surface, force profiles are less repulsive for interactions involving, at least, one modified surface. Such changes are attributed to irregularity of the topography of protein surface and non-uniform distribution of surface charges on the surface of modified cellulose. Binding double CBD hybrid protein to cellulose surfaces causes adhesive forces at retraction, whereas separation curves obtained with cellulose modified with single CBD show small adhesion only at high ionic strength. This is possibly caused by the formation of the cross-links between cellulose surfaces in the case of double CBD.  相似文献   

4.
The stability of thin water films on silicon substrates coated with cationic and anionic polyelectrolytes was investigated by the thin film pressure balance technique. Depending on the surface charge of the substrate, the water films are either stable (on negatively charged wafers) or rupture rapidly (on positively charged wafers). It is supposed that this behavior is due to a negative surface charge of the free water surface. The underlying assumption that the films' stability is due to electrostatic interactions is supported by measurements of the disjoining pressure on silicon wafers with a native oxide layer, which indicates a decrease of the film thickness, and thus decreasing repulsive interaction between the two film interfaces, with increasing ionic strength.  相似文献   

5.
Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the influence of ionic strength on the adhesion of two streptococcal strains to fibronectin films. Streptococcus mutans LT11 and Streptococcus intermedius NCTC11324 both possess antigen I/II with the ability to bind fibronectin from solution, but S. intermedius binds approximately 20x less fibronectin than does the S. mutans strain under identical conditions. Both strains as well as fibronectin films are negatively charged in low ionic strength phosphate buffered saline (PBS, 10x diluted), but bacteria appear uncharged in high ionic strength PBS. Physicochemical modeling on the basis of overall cell surface properties (cell surface hydrophobicity and zeta potentials) demonstrates that both strains should favor adhesion to fibronectin films in a high ionic strength environment as compared to in a low ionic strength environment, where electrostatic repulsion between equally charged surfaces is dominant. Adhesion of S. intermedius to fibronectin films in a parallel plate flow chamber was completely in line with this modeling, while in addition atomic force microscopy (AFM) indicated stronger adhesion forces upon retraction between fibronectin-coated tips and the cell surfaces in high ionic strength PBS than in low ionic strength PBS. Thus, the dependence of the interaction on ionic strength is dominated by the overall negative charge on the interacting surfaces. Adhesion of S. mutans to fibronectin films, however, was completely at odds with theoretical modeling, and the strain adhered best in low ionic strength PBS. Moreover, AFM indicated weaker repulsive forces upon approach between fibronectin-coated tips and the cell surfaces in low ionic strength PBS than in high ionic strength PBS. This indicated that the dependence of the interaction on ionic strength is dominated by electrostatic attraction between oppositely charged, localized domains on the interacting surfaces, despite their overall negative charge. In summary, this study shows that physicochemical modeling of bacterial adhesion to protein-coated surfaces is only valid provided the number of specific interaction sites on the cell surfaces is low, such as on S. intermedius NCTC11324. Nonspecific interactions are dominated by specific interactions if the number of specific interaction sites is large, such as on S. mutans LT11. Its ionic strength dependence indicates that the specific interaction is electrostatic in nature and operative between oppositely charged domains on the interacting surfaces, despite the generally overall negatively charged character of the surfaces.  相似文献   

6.
Colloidal probe microscopy was employed to study interactions between cellulose surfaces in aqueous solutions. Hydrodynamic forces must be accounted for in data analysis. Long-range interactions betweeen cellulose surfaces are governed by double-layer forces and, once surfaces contact, by osmotic repulsive forces and viscoelasticity. Increasing the ionic strength decreases surface potentials and increases adhesive forces. Polyelectrolytes cause strong steric repulsion at high surface coverage, where interactions are sensitive to probe velocity. Polymer bridging occurs at low coverage. The conformation of adsorbed polyelectrolytes depends on the polymer concentration. Copyright 2000 Academic Press.  相似文献   

7.
Ionic strength dependence of interaction and friction forces between hydrophilic alpha-alumina particles and c-sapphire surfaces (0001) were investigated under basic pH conditions using the colloidal probe method. The compression of the double layer could be seen from force-distance curves as the ionic strength of the solution increased. The forces were repulsive at all ionic strengths measured, even though the interaction distance changed drastically. No jump to contact occurred. The interaction distance decreased from about 20 nm in 10(-3) M KCl solution to about 7 nm in the 1 M KCl case. The lubricating effect of hydrated cations on the lateral friction force was demonstrated at high electrolyte concentrations. This was attributed to more hydrated cations being present in the solution. The friction behavior was closely related to the short-range repulsive forces between the alpha-alumina surfaces at pH 11.  相似文献   

8.
We have investigated the DLVO surface forces of oxidized tungsten and cobalt surfaces using the atomic force microscope (AFM) colloidal probe technique. It was shown by X-ray photoelectron spectroscopy (XPS) and electrokinetic measurements that this model system is representative of industrial tungsten carbide (WC) and cobalt powders used in the production of hard metals. We found that the attractive van der Waals forces are well described by Hamaker constants, calculated from optical data for WO(3) and CoOOH. The repulsive electrostatic double layer forces between WO(3) surfaces increase with increasing pH due to an increasingly negative surface potential. This surface potential decreases with increasing ionic strength at pH 7.5. The electrostatic interaction between WO(3) and CoOOH is attractive at pH 10, suggesting a positively charged CoOOH surface.  相似文献   

9.
The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and without (IB03987) antigen I/II through atomic force microscopy (AFM) and to relate these interaction forces with the adhesion of the strains to saliva-coated glass in a parallel plate flow chamber. Upon approach of the bacteria toward a saliva-coated AFM tip, both strains experienced a similar repulsive force that was significantly smaller at pH 6.8 (median 3.0 and 3.1 nN for LT11 and IB03987, respectively) than at pH 5.8 (median 4.6 and 4.7 nN). The decay length of these repulsive forces was between 19 and 37 nm. Upon retraction at pH 6.8, the combined specific and nonspecific adhesion forces were significantly stronger for the parent strain LT11 (median -0.4 nN) than for the mutant strain IB03987 (median 0.0 nN), whereas at pH 5.8 the median of the adhesion forces measured was 0.0 nN for both strains. Moreover, at pH 6.8, the parent strain LT11 adhered in significantly higher numbers (9.6 x 106 cm-2) to a salivary coating than the mutant strain IB03987 (2.5 x 106 cm-2). Similar to the difference in adhesion forces between both strains at pH 5.8, the difference in adhesion between both strains also disappeared at pH 5.8, which suggests the involvement of attractive electrostatic forces in the interaction between antigen I/II and salivary coatings. In summary, this study shows that antigen I/II at the surface of S. mutans LT11 is responsible for its increased adhesion to salivary coatings under flow through an additional attractive electrostatic force.  相似文献   

10.
Stabilization of oil-in-water emulsion films from PEO-PPO-PEO triblock copolymers is described in terms of interaction surface forces. Results on emulsion films from four Pluronic surfactants, namely F108, F68, P104 and P65 obtained with the Thin Film Pressure Balance Technique are summarized. It is found that film stabilization is due to DLVO (electrostatic) and non-DLVO (steric in origin) repulsive forces. The charging of the oil/water film interfaces is related to preferential adsorption of OH(-) ions. This is confirmed by pH-dependent measurements of the equivalent film thickness (h(w)) at both constant capillary pressure and ionic strength. With reducing pH in the acidic region, a critical value (pH(cr,st)) corresponding to an isoelectric state of the oil/water film surfaces is found where the electrostatic interaction in the films is eliminated. At pH≤pH(cr,st), the emulsion films are stabilized only by steric forces due to interaction between the polymer adsorption layers. Disjoining pressure (Π) isotherms measured for emulsion films from all the four Pluronic surfactants used at pH相似文献   

11.
Enzymatic degradation of model cellulose films prepared by a spin-coating technique was investigated by ellipsometry. The cellulose films were prior to degradation characterized by ellipsometry, contact angle measurements, ESCA (electron spectroscopy for chemical analysis) and AFM (atomic force microscopy). At enzyme addition to preformed cellulose films an initial adsorption was observed, which was followed by a total interfacial mass decrease due to enzymatic degradation of the cellulose films. The degradation rate was found to be constant during an extended time of hours, whereafter the degradation leveled off. In parallel to the decreased interfacial mass, the cellulose degradation resulted in a thinner and more dilute interfacial film. At long degradation times, however, there was an expansion of the cellulose film. The enzyme concentration affected the degradation rate significantly, with a faster degradation at a higher enzyme concentration. The effects of pH, temperature, ionic strength and stirring rate in the cuvette were also investigated.  相似文献   

12.
The effect of roughness on the dewetting behavior of polyethylene thin films on silicon dioxide substrates is presented. Smooth and rough silicon dioxide substrates of 0.3 and 3.2-3.9 nm root-mean-square roughness were prepared by thermal oxidation of silicon wafers and plasma-enhanced chemical vapor deposition on silicon wafers, respectively. Polymer thin films of approximately 80 nm thickness were deposited by spin-coating on these substrates. Subsequent dewetting and crystallization of the polyethylene were observed by hot-stage optical microscopy in reflection mode. During heating, the polymer films melt and dewet on both substrates. Further observations after cooling indicate that, whereas complete dewetting occurs on the smooth substrate surface, partial dewetting occurs for the polymer film on the rough surface. The average thickness of the residual film on the rough surface was determined by ellipsometry to be a few nanometers, and the spatial distribution of the polymer in the cavities of the rough surface could be obtained by X-ray reflectometry. The residual film originates from the impregnation of the porous surface by the polymer fluid, leading to the observed partial dewetting behavior. This new type of partial dewetting should have important practical consequences, as most real surfaces exhibit significant roughness.  相似文献   

13.
Removal of lignin, hemicelluloses and other minor components during pulping results in a porous fibrillar structure. Interactions of cellulose fibre surfaces with wet-end additives and other materials depend both on the interfacial properties of the cellulose and on the morphology of the surface. It would be useful to be able to separate the interactions with the cellulose from those that depend on surface roughness and porosity by preparing flat cellulose surfaces. Current methods give surfaces of amorphous cellulose or of cellulose II, differing in density and crystallinity from the original cellulose I surface. We propose a new route to prepare smooth model surfaces of cellulose I, starting from colloidal dispersions of cellulose I nanocrystals. The nanometer-sized width of these rod-like colloidal particles allows a relatively flat surface to be prepared from the suspension by casting an aqueous suspension on an appropriate surface and allowing the water to evaporate. Oriented films can be prepared by spin-coating or shearing. The surface composition and morphology of the films were examined by X-ray photoelectron spectroscopy and atomic force microscopy.  相似文献   

14.
The interaction between a lignin film and a cellulose sphere has been measured using the colloidal probe force technique as a function of aqueous electrolyte solution conditions. The lignin film was first studied for its roughness and stability using atomic force microscopy imaging and quartz crystal microbalance measurements, respectively. The film was found to be smooth and stable in the pH range of 3.5-9 and in ionic strengths up to and including 0.01 M. This range of ionic strength and pH was hence used to measure the surface force profiles between lignin and cellulose. Under these solution conditions, the measured forces behaved according to DLVO theory. The force-distance curves could be fitted between the limits of constant charge and constant potential, and the surface potential of the lignin films was determined as a function of pH. At a pH greater than 9.5, a short range steric repulsion was observed, indicating that the film was swelling to a large extent but did not dissolve. Thus, lignin films prepared in this manner are suitable for a range of surface force studies.  相似文献   

15.
Self-organized multilayer films were formed by sequential addition of oppositely charged cellulose I nanoparticles. The all-cellulosic multilayers were prepared via adsorption of cationicially modified cellulose nanofibrils (cat NFC) and anionic short crystalline cellulose (CNC) at pH 4.5 and pH 8.3. The properties and build-up behavior of layer-by-layer-constructed films were studied with microgravimetry (QCM-D) and the direct surface forces in these systems were explored with colloidal probe microscopy to gain information about the fundamental interplay between cat NFC and anionic CNC. The importance of the first layer on the adsorption of the consecutive layers was demonstrated by comparing pure in situ adsorption in the QCM-D with multilayer films made by spin coating the first cationic NFC layer and then subsequently adsorbing the following layers in situ in the QCM-D chamber. Differences in adsorbed amount and viscoelastic behavior were observed between those two systems. In addition, a significant pH dependence of cat NFC charge was found for both direct surface interactions and layer properties. Moreover the underlying cellulose layer in multilayer film was established to influence the surface forces especially at lower pH, where the cat NFC chains extensions were facilitated and overall charge was affected by the cationic counterpart within the layers. This enhanced understanding the effect of charge and structure on the interaction between these renewable nanoparticles is valuable when designing novel materials based on nanocellulose.  相似文献   

16.
The wetting of two different model cellulose surfaces has been studied; a regenerated cellulose (RG) surface prepared by spin-coating, and a novel multilayer film of poly(ethyleneimine) and a carboxymethylated microfibrillated cellulose (MFC). The cellulose films were characterized in detail using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). AFM indicates smooth and continuous films on a nanometer scale and the RMS roughness of the RG cellulose and MFC surfaces was determined to be 3 and 6 nm, respectively. The cellulose films were modified by coating with various amounts of an anionic fluorosurfactant, perfluorooctadecanoic acid, or covalently modified with pentadecafluorooctanyl chloride. The fluorinated cellulose films were used to follow the spreading mechanisms of three different oil mixtures. The viscosity and surface tension of the oils were found to be essential parameters governing the spreading kinetics on these surfaces. XPS and dispersive surface energy measurements were made on the cellulose films coated with perfluorooctadecanoic acid. A strong correlation was found between the surface concentration of fluorine, the dispersive surface energy and the contact angle of castor oil on the surface. A dispersive surface energy less than 18 mN/m was required in order for the cellulose surface to be non-wetting (theta e>90 degrees ) by castor oil.  相似文献   

17.
Direct measurements of the interaction forces between a spherical silica particle and a small air bubble have been conducted in aqueous electrolyte solutions by using an atomic force microscope (AFM). The silica particle was hydrophobized with a silanating reagent, and the interaction forces were measured by using several particles with different surface hydrophobicities. In the measured force curves, a repulsive force was observed at large separation distances as the particle moved towards the bubble. The origin of the repulsive force was attributed to an electrostatic double-layer force because both the particle and bubble were negatively charged. After the repulsive force, an extremely long-range attractive force acted between the surfaces. These results indicate that the intervening thin water film between the particle and bubble rapidly collapsed, resulting in the particle penetrating the bubble.

The instability of the thin water film between the surfaces suggests the existence of an additional attractive force. By comparing the repulsive forces of the obtained force curves with the DLVO theory, the rupture thickness was estimated. The hydrophobicity of the particle did not significantly change the rupture thickness, whereas the pH of the solution is considered to be a critical factor.  相似文献   


18.
Exact values of the sorption energies of single molecules of water on all available sorption sites of crystalline cellulose II have been obtained by conformational analysis. The sorption energies are equated to the total energy (Etot ) of interaction between the water molecule and all the suitable atomic groups of the cellulose. Etot is composed of van der Waals, H-bond, and electrostatic energies. The interferences of water molecules on vicinal sorption sites were obtained. Sites in which such interference can occur were identified for crystalline cellulose II. Sorption energy in crystalline cellulose II appears to depend only on the interaction of water with surface sorption sites of the crystal. There appears to be favorable sorption on 1) sites exerting high attractive forces, and 2) sites which are exposed and protrude from the crystal surface. Sites recessed from the crystal surface are generally repulsive due to strong interactions with neighboring groups. All the sorption energies of the “monolayer” were calculated. Very strong sorption sites cannot always form a second layer because of strong steric hindrance from vicinal groups. Sorption capacities of crystalline cellulose II were calculated, and the isotherm of the schematic five chain crystallite used was constructed by theoretical means. The results obtained were briefly compared with those for cellulose I crystallites and amorphous cellulose. The inflection points of the isotherm and the variability of Dent's k 1 constant for the water monolayer with relative humidity for the cellulose I and II isotherms were also calculated by theoretical means.  相似文献   

19.
This investigation describes the interaction of trimethyl chitosans (TMCs) with surfaces of cellulose thin films. The irreversible deposition/adsorption of TMCs with different degrees of cationization was studied with regards to the salt concentration and pH. As substrates, cellulose thin films were prepared by spin coating from trimethylsilyl cellulose and subsequent regeneration to pure cellulose. The pH-dependent zeta potential of cellulose thin films and the charge of TMCs were determined by streaming potential and potentiometric charge titration methods. A quartz crystal microbalance with dissipation monitoring was further used as a nanogram sensitive balance to detect the amount of deposited TMCs and the swelling of the bound layers. The morphology of the coatings was additionally characterized by atomic force microscopy and related to the adsorption results. A lower degree of cationization leads to higher amounts of deposited TMCs at all salt concentrations. Higher amounts of salt increase the deposition of TMCs. Protonation of primary amino groups results in the immobilization of less material at lower pH values. The results from this work can further be extended to the modification of regenerated cellulosic materials to obtain surfaces, with amino- and trimethylammonium moieties.  相似文献   

20.
Charging and swelling of cellulose in aqueous environments are of highest interest with respect to the performance of cellulose based products and applications. To unravel the interplay between ionization and structural features of the biopolymer hydrogel we compared non-crosslinked and crosslinked cellulose thin films based on a determination of the Donnan potential [S.S. Dukhin, R. Zimmermann, C. Werner, J. Colloid Interface Sci. 274 (2004) 309] from microslit electrokinetic (streaming potential/streaming current) experiments and layer thicknesses from ellipsometry in aqueous electrolyte solutions. The pH dependence of the Donnan potential, reflecting the ionization of carboxylic acid groups within the cellulose films, was found to be significantly different from the related trend of the streaming current which reflects the characteristics of the topmost surface of the layers: While carboxylic acid groups on the surface of the films dissociate as isolated functionalities, the electrostatic interactions of ionized groups within the cellulose layers cause an incomplete dissociation (pK shift) of the carboxylic acid and a layer expansion (swelling) in the alkaline pH range. The system was found to restrict its volume charge density even after structural restrictions (crosslinking) of the layer and at lower ionic strength of the solutions through a further decrease of the degree of dissociation of the carboxylic acid functions. These findings were attributed to the local accumulation of the carboxylic acid groups caused by preferential oxidation of the amorphous regions of the cellulose and to the ordered water structure within the layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号