首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
弹载惯性/卫星/星光高精度组合导航   总被引:1,自引:0,他引:1  
选取捷联惯导系统误差作为组合导航系统状态,利用捷联惯导与卫星导航系统各自的位置输出构造量测,设计惯性/卫星组合导航算法。在惯性/星光组合导航算法设计中,对星敏感器安装误差进行建模并也列入组合导航系统状态,利用星敏感器输出的姿态矩阵和根据惯导输出计算得到的等效姿态矩阵构造量测。从而,利用联邦滤波技术设计出弹载惯性/卫星/星光高精度组合导航方法。该组合导航方法的仿真结果表明,其定位、定姿精度分别达到12.1m(3σ)和0.27′(3σ),而且能够有效标定出惯性器件的随机常值误差和星敏感器的安装误差。  相似文献   

2.
适合于航空应用的INS/CNS/Doppler组合导航系统研究   总被引:4,自引:0,他引:4  
针对无阻尼惯导系统的误差特点,设计了适合航空应用的惯性(INS)/天文(CNS)/Doppler组合导航系统,建立了该组合导航系统卡尔曼滤波模型。仿真试验表明,该组合导航系统能为飞行体提供精确的导航信息。  相似文献   

3.
传统的天文导航方法由于受水平基准精度的制约,难以进一步提高定位精度。针对INS/CNS组合导航方法对水平基准依赖的问题,提出了一种新颖的基于星光折射技术的INS/CNS自主组合导航方案。将惯性系下的非线性惯导误差传播方程作为系统状态方程,将星敏感器测得姿态和星光折射信息作为量测,采用UKF滤波算法,构成全面最优的INS/CNS组合导航。仿真结果表明,星敏感器精度为3″时,导航系统的定位精度优于200 m,姿态精度优于3″,导航定位精度随所使用的折射星数目增多明显提高,且方案在系统大角度误差条件下仍然适用。  相似文献   

4.
基于加性四元数的SINS/CNS非线性紧组合方法   总被引:1,自引:0,他引:1  
针对SINS/CNS组合导航系统中的非线性特性,提出了基于加性四元数的SINS/CNS非线性紧组合方法.从捷联惯性导航系统误差非线性建模和天文角度非线性量测两个方面出发,推导了基于加性四元数的捷联惯导误差传播特性,构建了天文导航的非线性量测模型,采用二阶插值滤波算法实现了SINS和CNS的非线性信息融合.计算机仿真显示,SINS/CNS非线性紧组合方法充分考虑系统的非线性特性,机动情况下的峰值误差较小,相对线性紧组合方法导航精度提高约15%.  相似文献   

5.
针对飞行器在长航时高速巡航过程中,捷联惯性导航系统存在误差漂移,GPS 导航可能会丢星、信号失锁,天文导航系统易受环境干扰,组合系统模型线性化误差易导致滤波发散等问题,分析了三种导航系统的优缺点,提出了 SINS/GPS/CNS 组合导航联邦滤波算法,该算法可以取长补短,巧妙地将 GPS 定位和天文导航定姿精度高的优势辅助于捷联惯导系统,利用卡尔曼联邦滤波器对捷联惯导系统进行误差估计,并对联邦滤波算法进行了有效的改进.计算机仿真显示,该滤波器收敛速度快,具有一定的容错功能,其滤波精度较 SINS/GPS 组合导航系统在位置误差和速度误差上均有约5%左右的小幅提升,在平台角误差上更是提高了一个数量级.仿真结果验证了该组合导航方案的可行性和算法的有效性,有重要的工程应用价值.  相似文献   

6.
联邦滤波在飞机组合导航中的应用   总被引:1,自引:0,他引:1  
研究了中等精度捷联惯导系统(SINS),大气数据系统(ADS)和塔康系统(TACAN)构成的机载组合导航系统.在分析SINS、ADS、TACAN各自特点的基础上,提出了SISN/ADS/TACAN组合导航系统的联邦滤波方案,并建立了相应的组合导航系统的数学模型.以一条典型的飞行轨迹进行了全航线的仿真研究,仿真结果为:基于联邦滤波的SINS/ADS/TACAN组合导航系统的位置精度约为70 m(CEP),速度精度约为0.75 m/s(1),航向精度为约为 (1)和姿态精度约为 (1),由此可见基于联邦滤波的SINS/ADS/TACAN组合导航系统可以充分利用各机载导航子系统信息,满足飞机导航定位的精度要求.  相似文献   

7.
由惯性导航系统(SINS)和卫星导航系统(GPS)构成的组合导航系统一直是陆用车辆的主要导航设备。当GPS失锁时,SINS的定位误差将随着时间不受控制的迅速增长。为了提高惯导系统的定位精度,相比较于单一的神经网络,集成学习算法中的Bagging模型能够深度学习惯导误差之间的内在关系,进一步提高导航性能。在智能算法和组合导航系统的框架下提出了惯导系统的误差抑制方案,即在GPS存在时训练组合导航系统数据,当GPS失锁时预测惯导系统位置增量。试验结果表明,该方案能够在GPS丢失时抑制惯导系统定位误差发散,相比较于BP算法,Bagging模型的定位精度在5 min时提高了约49%,15 min时提高了约41%。  相似文献   

8.
捷联惯导与小视场星体跟踪器构成惯性/天文组合导航系统,导航精度受导航初始误差和器件误差的综合影响。基于此,提出一种捷联惯导与小视场星体跟踪器相组合的初始对准算法,对导航初始姿态误差和惯性器件误差进行估计修正。捷联惯导初始对准过程完成之后,在地面准静基座条件下做速度和位置阻尼条件下的惯导更新解算,利用捷联惯导系统的速度误差量测及小视场星体跟踪器的导航误差角测量量,设计组合粗对准算法和组合精对准算法,用于对捷联惯导系统的初始对准误差和惯性器件误差做进一步有效估计。仿真结果表明:对中等精度导航级捷联惯导系统,组合对准后水平姿态精度可提高到2’’,方位精度可提高到5’’。  相似文献   

9.
GPS/SINS组合导航系统在运载火箭中的应用   总被引:1,自引:1,他引:0  
针对运载火箭特点,着重研究在发射惯性坐标系下,位置、速度组合模式的GPS/SINS组合导航算法,推导了该坐标系下的惯导一阶误差传播方程,建立了该坐标系下GPS/SINS组合导航系统的状态方程和观测方程,并进行了相关数学仿真验证。仿真结果表明,在该坐标系中,GPS/SINS组合导航算法能较准确地给出运载火箭的位置、速度和姿态信息,提高运载火箭制导精度。  相似文献   

10.
一些舰艇装备两套或多套惯性导航系统。为提高这些舰艇导航信息输出的精度和稳定性,提出一种双惯导组合导航方法。从惯性导航系统的误差特性出发,分析了固定指北惯性导航系统和台体方位旋转惯导系统的误差特性,并根据两种惯导系统的不同误差特性,设计了Kalman滤波组合导航控制方案,通过仿真验证了组合导航控制方案的效果。仿真结果表明,采用该方法后,在不增加任何硬件成本的基础上,能够提高导航信息输出精度和稳定性。例如,当陀螺漂移为0.002(°)/h,加速度计零偏5×10-5 g时,固定指北惯导24 h定位误差约为2.8 n mile,速度误差波动约0.2 kn,台体方位旋转惯导系统24 h定位精度约为1.7 n mile,速度误差波动约0.5 kn;当采用组合导航控制时,组合输出24 h定位精度约1.5 n mile,速度误差波动约0.15 kn。  相似文献   

11.
研究了一种可用于运载火箭的SINS/GNSS自主导航方案。起飞前捷联惯组采用基于惯性系重力加速度积分的解析粗对准和卡尔曼滤波精对准,起飞后采用SINS/GNSS卡尔曼滤波组合导航反馈实时修正姿态、速度和位置。仿真结果表明捷联惯组水平自主对准误差0.01°,方位自主对准误差1.5°,起飞后经组合导航修正后的姿态误差小于0.2°,速度误差小于0.4m/s,位置误差小于40m,考虑所有误差的蒙特卡罗仿真结果满足火箭入轨精度要求,此方案具有较高的工程应用价值。  相似文献   

12.
XNAV/UVNAV/SINS组合导航在航天器轨道机动中的应用   总被引:1,自引:0,他引:1  
针对X射线脉冲星导航在航天器轨道机动过程中精度不高甚至发散的问题,提出一种将X射线脉冲星导航结合惯性导航和紫外敏感器的组合导航方法。以航天器在惯性系中的位置、速度、姿态四元数和惯性导航设备误差作为系统状态变量,用X射线探测器测量X射线脉冲到达时间,用紫外敏感器测量中心天体质心相对于航天器的方向矢量和距离以及航天器在惯性系中的姿态四元数,用扩展卡尔曼滤波器估计组合导航系统状态。仿真结果验证了该组合导航方法的可行性,能够解决轨道机动中X射线脉冲星单独导航的误差过大(位置误差达107m)问题,且该组合导航具有较高的导航精度,在轨道机动前、机动中和机动后导航位置误差均在100 m以内。  相似文献   

13.
为提高水下SINS/DVL组合导航系统的精度,建立了捷联惯性导航系统(SINS)的非线性误差模型,并建立多普勒测速仪的误差方程,以SINS为主导航设备建立SINS/DVL组合导航系统模型。设计了5阶球面最简相径容积卡尔曼滤波器,采用了球面最简相径采样规则改进容积卡尔曼滤波,并应用于SINS/DVL组合导航系统中。通过数学平台仿真验证了5阶球面最简相径容积卡尔曼滤波方法有效性,仿真结果表明:该方法能够有效提高SINS/DVL组合导航系统的精度,且稳定性好。  相似文献   

14.
针对粒子滤波存在的粒子退化和重要性密度函数难以选取的问题,在吸收抗差自适应滤波、二阶插值滤波和粒子滤波算法优点的基础上,提出了一种新的抗差自适应插值粒子滤波算法。该算法利用二阶插值滤波算法得到重要性密度函数,通过抗差自适应因子实时控制动力学模型误差及观测异常对导航解的影响。将该算法应用于SINS/CNS/SAR组合导航系统进行计算仿真,并与经典的粒子滤波算法进行比较分析。结果表明,提出的滤波算法得到的姿态误差控制在[-0.3′,+0.3′],速度误差控制在[-0.4 m/s,+0.4 m/s],位置误差控制在[-5 m,+5 m],性能明显优于经典的粒子滤波算法。新的滤波算法不但能够有效地抑制粒子退化,而且能够有效地控制动力学模型误差及观测异常的影响,提高了组合导航的滤波精度。  相似文献   

15.
单目视觉里程计/惯性组合导航算法   总被引:1,自引:0,他引:1  
提出一种单目视觉里程计/捷联惯性组合导航定位算法.与视觉里程计估计相机姿态不同,惯导系统连续提供相机拍摄时刻对应的三维姿态,克服了单纯由视觉估计相机姿态精度低造成的长距离导航误差大的问题.通过配准和时间同步,用惯导系统解算的速度和视觉里程计计算的速度之差作为组合导航的观测量,采用Kalman滤波修正组合导航系统的误差,同时估计视觉里程计标度因数误差.分别在室内外不同环境下进行了22 m的推车实验和1412m的跑车实验,定位误差分别为3.2%和4.0%.与Clark采用姿态传感器定期更新相机姿态估计结果的方法相比,单目视觉里程计/惯性组合导航定位精度更高,定位误差随距离增长率低,适合步行机器人或轮式移动机器人在复杂地形环境下车轮严重打滑时的自主定位导航.  相似文献   

16.
MIMU/GPS组合导航系统研究   总被引:4,自引:0,他引:4  
根据智能交通对车辆导航和定位的要求,研究了MIMU与GPS松散组合导航系统,以速度、位置作为观测量设计了Kalman滤波器。为了验证系统的性能,利用MIMU实验室测试数据和GPS仿真数据对该组合导航系统进行了半物理仿真,分别给出了纯MIMU、组合导航系统及GPS信号短时间丢失时的位置误差仿真曲线。分析结果表明组合系统具有良好的长期工作精度,能够满足车辆导航和定位的要求。  相似文献   

17.
传统的SINS误差模型是基于小姿态误差角假设下的线性化误差模型,由于忽略了高阶项,因而不能精确描述系统的非线性特征,易造成较大的导航估计误差甚至滤波器发散。为了克服SINS线性化误差模型的缺点,建立了基于四元数的SINS/SAR组合导航系统非线性模型,并将自适应UPF滤波算法应用于该组合系统。仿真结果表明,建立的基于四元数的组合导航系统模型,不但能有效减小导航误差,提高导航定位精度,而且具有良好的实时性。  相似文献   

18.
为了解决大失准角条件下的捷联惯导初始自对准问题,通过分析捷联惯导系统大失准角误差模型,利用平台惯导系统罗经对准原理,提出了一种新的捷联惯导系统罗经对准方案。该方案的具体实现划分为三个阶段:方位角未知情况下的水平对准;大失准角时变参数罗经方位对准;定参数罗经对准。该方案通过实时调节罗经参数缩短了对准时间;利用大方位失准角模型代替小失准角模型,在算法收敛阶段更加准确地描述了捷联惯导系统的误差传递方式。仿真试验表明,使用陀螺随机漂移稳定性为0.01(°)/h的捷联惯导系统,该对准方案能在60 s内方位精度到达1°,并能在对准结束时达到3’的方位对准精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号