首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
在全温范围内应用的光纤陀螺,标度因数误差是其主要的误差之一。特别是在大角速率或者高精度应用时,光纤陀螺的标度因数误差甚至超过零偏漂移误差。在实际使用中,需对陀螺标度因数在全温范围内进行建模和补偿。对光纤陀螺标度因数误差机理进行详细分析后,提出了一种连续旋转的光纤陀螺全温标度因数快速建模补偿方法。基于单轴速率转台的连续旋转,可以自动快速完成标度因数全温建模且工程实现简单易行。更重要的是该方法可以有效识别标度因数在全温范围内的变化拐点,提高建模和补偿的精度。对比试验结果表明,采用此方法后能精确测得某型光纤陀螺全温工作的标度因数真实拐点为48℃,全温标度因数补偿精度优于15′10~(-6),较按照GJB2426-2004进行的多点测试后补偿提高10%左右。  相似文献   

2.
当光纤陀螺的输入角速率较小时,其测量误差比较大,很难满足卫星等对测量精度要求较高的应用领域要求。文中主要从闭环反馈主回路探测器误差分析开始,分别从电子串扰、Y波导的非线性及D/A转换器的非线性等几方面,论述了在小角速率输入的情况下,分别对光纤陀螺标度因数非线性的影响,并且给出了改善的方法。试验结果显示,采取相应措施后,光纤陀螺的标度因数线性度有明显的提高。  相似文献   

3.
高精度惯性导航系统对由温度引起的光纤陀螺标度因数变化指标提出了很高的要求。采用温度补偿技术是一种提升标度因数性能的有效方法,其中建立精确且普适的温度模型是关键。提出并分析了光纤陀螺温度与标度因数模型的迟滞现象。通过分析和试验表明,标度因数模型的迟滞现象是由光纤陀螺结构的热不均匀性造成的,采用多温度点采样来修正标度因数模型的方法可以有效避免模型的迟滞现象,提升标度因数模型的补偿效果,使光纤陀螺可以适应各种温度变化的环境。在-40℃~+60℃范围内同时对光纤环圈和光源的温度进行采集,并利用光源温度与平均波长的关系来修正标度因数模型,通过模型修正可以将光纤陀螺全温标度因数稳定性指标由常规模型下的36×10~(–6)提升到12×10~(–6)。  相似文献   

4.
标度因数不对称度是评价光纤陀螺的一项重要指标,对其进行精确测量在高精度导航应用中具有重要意义。传统的测试方法受转台速率控制精度限制,很难精确测量小于1×10-6的不对称度。首次提出基于角速率积分的标度因数不对称度测量方法。该方法给定转台正反方向转动的角度,由固定在转台上的被测光纤陀螺进行角速率测量,并对输出值积分,从而得到标度因数不对称度。该方法基于转台位置控制,避免了转速不稳定及正反向转速不对称等因素造成的影响。还对可能引起测量误差的因素进行了分析。最后采用角速率积分法测得高精度光纤陀螺标度因数不对称度小于1×10-6。  相似文献   

5.
为了进一步提高光纤陀螺标度因数的测试精度,对光纤陀螺标度因数测试过程进行理论分析,确定了影响光纤陀螺标度因数测试误差的主要因素,并进行了计算机仿真和实验验证。结果表明:由于安装误差、北向地速分量以及转台速率精度的影响,光纤陀螺测试起始位置和采样时间的选择均会给小速率标度因数不对称性和非线性度的测试带来误差,而大速率标度因数的测试基本不受影响;通过对各输入速率点进行整圈采样,可以有效地降低小速率标度因数的测试误差,使其测试精度提高1个量级以上,实现对光纤陀螺标度因数性能更加准确的测试。  相似文献   

6.
谐振式光纤陀螺使用窄线宽激光器作为光源以得到较好的谐振特性,而激光光源线宽会受驱动电流、温度等的影响发生不同程度的展宽,从而影响标度因数。为探索激光器线宽对谐振式光纤陀螺标度因数的影响,利用光源与谐振腔的卷积模型建立陀螺谐振腔输出的解调曲线模型,基于该模型分析激光器线宽对陀螺谐振腔解调曲线斜率的影响,进一步得出激光器线宽展宽会非线性地减小标度因数的结论。完成了实验验证,并以半高全宽为300 kHz的谐振腔为例,给出了标度因数变化范围限制在1%以内时,激光器线宽需控制在3 kHz以内的结论。为谐振式光纤陀螺中激光器的选择以及驱动电路的设计提供了理论基础。  相似文献   

7.
应力和温度是影响光纤陀螺特性的两个重要因数,环圈骨架是它们对光纤环施加影响的载体。本试验所制作的4J32芯轴式环圈骨架具有良好的热对称结构,低的热导率,以及几乎与光纤纤芯一致的热膨胀系数,所以它不仅可以降低光纤环轴向温度梯度,减小光纤环整体的温度梯度变化率,而且也能有效地减小环圈骨架和光纤环之间因热膨胀不一致导致的热应力对陀螺的影响。通过理论和有限元分析,结合多个光纤环样本的试验,可以看到:4J32芯轴式环圈骨架相对铝材料的骨架,其对陀螺的整体性能有将近一倍的改善作用。  相似文献   

8.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

9.
旋转载体驱动微机械陀螺是一种新型的振动式MEMS陀螺,它没有微机械陀螺通常所具有的驱动结构,而只有检测模态。它安装于旋转载体上,巧妙地利用了载体的自旋作为驱动,从而使得敏感质量获得角动量。当载体发生横向转动时,敏感质量将受到科里奥利力的作用。在进动力矩、弹性力矩和阻尼力矩的共同作用下,敏感质量将产生周期性振动。振动频率对应于载体自旋频率,振动幅度与载体输入角速度大小成比例。由此工作机理,得出了敏感元件的动力学方程,并基于动力学方程建立了陀螺标度因数的误差模型。接着,根据误差模型,对标度因数的稳定性进行了分析和实际测试。分析和实验数据说明,载体自旋频率的变化是造成标度因数不稳定的主要原因。为了保证陀螺测量精度,提出了一种抑制载体自旋频率变化对标度因数影响的补偿算法,提高标度因数稳定性。最后,针对该算法的有效性,进行了实验验证。实验结果表明,此种方法能有效地提高标度因数的稳定性,标度因数相对于自旋频率变化的影响因子由补偿前的1.31 m V/(°/s)/Hz下降至7.14×10-3 m V/(°/s)/Hz。  相似文献   

10.
光谱不对称性是宽带光源的非理想特性之一,这种特性对标度因数的影响在中高精度光纤陀螺中会逐渐显现出来。为了分析光谱不对称性及其对光纤陀螺的影响,结合光纤陀螺所用宽带光源的典型光谱参数,对宽带光源的光谱不对称性进行了理论计算,分析了传统量化光谱不对称性方法存在的问题和局限性,并在此基础上提出了一种更加准确合理的光谱不对称性的量化指标。研究表明,光谱不对称性会产生相对相位误差,并在调制通道中产生视在增益误差,导致陀螺第二反馈回路"错误"调整调制通道的增益,引起光纤陀螺标度因数的非线性误差。对于类矩形光谱当不对称度小于10~(-2)时,视在增益误差引起的标度因数非线性误差会达到25′10~(-6)。因此在进行光源设计时需要将光谱不对称性作为一个定量考虑的指标。  相似文献   

11.
温度性能对光纤陀螺的精度影响至关重要。通过深入研究光纤环的十六极对称绕法,达到了改善光纤陀螺温度性能的目的。在对光纤陀螺由Shupe误差引起的热致旋转速率误差数学模型离散化的基础上,结合ANSYS有限元分析软件建立了精确到匝的光纤环十六极对称绕法有限元模型。根据所建立的光纤环温度分布模型,仿真分析比较了在光纤环四周施加变化的温度激励和分别在径向和轴向施加相同的恒定温度激励下,十六极对称绕法与四极和八极对称绕法绕制的光纤陀螺的温度性能。仿真实验结果显示:由十六极对称绕法绕制的光纤陀螺的热致旋转速率误差要低于四极和八极对称绕法1~2个数量级,这对十六极对称绕法在高精度光纤陀螺中的应用具有重要意义。  相似文献   

12.
随着光纤陀螺的实用化,发现载体振动会引起光纤陀螺尤其是高精度光纤陀螺的测量误差增大,对光纤陀螺的性能指标造成不可忽视的影响。对干涉式数字闭环光纤陀螺,从弹光效应出发,分析了振动对光纤陀螺光路的影响机理,得出了振动影响下光纤环中反向传播的光信号非互易相移误差信号的表现形式,并针对此提出了通过合理安装光纤环,使光路满足互异性,来抑制振动情况下光纤陀螺输出信号噪声和漂移。实验结果表明,该方案有效降低光纤陀螺输出信号的噪声,抑制了由振动引起的陀螺漂移,使得陀螺振动误差减小了一个数量级。  相似文献   

13.
前向神经网络中的径向基函数(RBF)网络是一种局部逼近网络,它用局部逼近的总和达到对训练数据的全局逼近,在理论上可以实现全局最优.该文利用径向基函数神经网络对某一温度段的陀螺标度因数的温度数据进行建模处理,并利用各组数据建立一种两因素RBF网络,这两个输入因素选择为温度以及各个温度值对于所属组初始温度的增量.仿真结果表明,所建立的两因素RBF网络可以精确地拟合各温度下的标度因数温度数据,仿真数据的误差与均方差比用BP网络训练的数据效果要好,在数值上提高了近一个数量级.  相似文献   

14.
针对光纤陀螺启动过程中的热致漂移误差问题,研究了一种模糊模型补偿方案。依据Shupe非互易性理论和Mohr加热模型试验的结论,以光纤环内侧温度和温度变化率为输入,以陀螺漂移为输出,建立了二输入一输出模糊模型。利用全温范围(-25℃~45℃)内光纤陀螺的恒温静态试验数据,基于自适应神经网络模糊推理系统的自学习功能,辨识出模糊规则库。通过实时施行模糊推理可实现光纤陀螺温度漂移的在线自动补偿。室温验证试验表明,陀螺的零偏稳定性由补偿前的0.037(°)/h提高到0.017(°)/h,陀螺启动时间由补偿前的30 min减少为2 min。  相似文献   

15.
针对温度变化所引起的光纤陀螺非互易相移误差,详细研究了隔热材料对减小热漂移误差的作用,并详细比较了使用不同厚度隔热层的光纤陀螺在相同变温历程下的热漂移误差大小以及达到热平衡状态所需的时间。仿真结果表明,当隔热层的厚度由0mm变化到4mm的过程中,热漂移误差的峰值由0.12(°)/h降低到了0.08(°)/h,同时达到热平衡的时间从2 520 s增加到了3 600 s。利用该仿真结果,可以在保证热启动时间满足条件的前提下找到一个最优的隔热层厚度,从而使热漂移误差的峰值最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号