首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem of permutation flowshop scheduling with the objectives of minimizing the makespan and total flowtime of jobs, and present a Multi-Objective Simulated-annealing Algorithm (MOSA). Two initial sequences are obtained by using simple and fast existing heuristics, supplemented by the implementation of three improvement schemes. Each of the two resultant sequences corresponds to a possible non-dominated solution containing the minimum value of one objective function. These sequences, taken one at a time, are given as the starting sequences to the MOSA. The MOSA seeks to obtain non-dominated solutions through the implementation of a simple probability function that attempts to generate solutions on the Pareto-optimal front. The probability function selects probabilistically a particular objective function, considering which the algorithm uncovers non-dominated solutions. Moreover, the probability function is varied in such a way that the entire objective-function space is covered uniformly so as to obtain as many non-dominated and well-dispersed solutions as possible. The parameters in the proposed MOSA are determined after conducting a pilot study. Two variants of the proposed algorithm, called MOSA-I and MOSA-II, with different parameter settings with respect to the temperature and epoch length, are considered in the performance evaluation of algorithms. In order to evaluate MOSA-I and MOSA-II, we have made use of 90 benchmark problems provided by Taillard [Eur. J. Operation. Res. 64 (1993) 278]. After an extensive literature survey, the following flowshop multi-objective scheduling algorithms have been identified as benchmark procedures: (a) MOGLS (Multi-Objective Genetic Local Search) by Ishibuchi and Murata [IEEE Trans. Syst., Man, Cybernet. C: Appl. Rev. 28 (1998) 392]; (b) Elitist Non-dominated sorting Genetic Algorithm (ENGA) by Bagchi [Multi-Objective Scheduling by Genetic Algorithms, Kluwer Academic Publishers, 1999]; (c) GPW (Gradual Priority Weighting) approach by Chang, Hsieh and Lin [Int. J. Prod. Econ. 79 (2002) 171]; and (d) a posteriori approach based heuristic by Framinan, Leisten and Ruiz-Usano [Eur. J. Operation. Res. 141 (2002) 559]. The non-dominated sets obtained from each of the existing benchmark algorithms and the proposed MOSA-I and MOSA-II are compared, and subsequently combined to obtain a net non-dominated front. It is found that most of the solutions in the net non-dominated front are yielded by MOSA-I and MOSA-II. In addition, it is noteworthy that both MOSA-I and MOSA-II require less computational effort than the MOGLS, ENGA and GPW.  相似文献   

2.
针对电子产品的售后维修服务问题,建立了一个同时考虑成本和服务质量的多目标逆向物流网络优化模型;该问题是多目标的NP-hard问题,应用NSGA-II算法和多目标模拟退火算法(MOSA)两种多目标进化算法,对模型进行求解并对其求解的效果进行比较分析;多组算例测试结果表明,NSGA-II相比MOSA更具优势。  相似文献   

3.
An application of the Exp-function method to search for exact solutions of nonlinear differential equations is analyzed. Typical mistakes of application of the Exp-function method are demonstrated. We show it is often required to simplify the exact solutions obtained. Possibilities of the Exp-function method and other approaches in mathematical physics are discussed. The application of the singular manifold method for finding exact solutions of the Fitzhugh–Nagumo equation is illustrated. The modified simplest equation method is introduced. This approach is used to look for exact solutions of the generalized Korteweg–de Vries equation.  相似文献   

4.
It is known that the simplest equation method is applied for finding exact solutions of autonomous nonlinear differential equations. In this paper we extend this method for finding exact solutions of non-autonomous nonlinear differential equations (DEs). We applied the generalized approach to look for exact special solutions of three Painlevé equations. As ODE of lower order than Painlevé equations the Riccati equation is taken. The obtained exact special solutions are expressed in terms of the special functions defined by linear ODEs of the second order.  相似文献   

5.
6.
In this paper, the Lie symmetry analysis are performed on the three nonlinear elastic rod (NER) equations. The complete group classifications of the generalized nonlinear elastic rod equations are obtained. The symmetry reductions and exact solutions to the equations are presented. Furthermore, by means of dynamical system and power series methods, the exact explicit solutions to the equations are investigated. It is shown that the combination of Lie symmetry analysis and dynamical system method is a feasible approach to deal with symmetry reductions and exact solutions to nonlinear PDEs.  相似文献   

7.
Based on the extended test approach (ETA), we investigated the nonlinear evolution equations, namely, (2 + 1)-dimensional Gardner equation. We aimed to obtain some exact breather-type and periodic-type soliton solutions for this model. These results show that the extended test technique together with the bilinear method is a simple and effective method to seek exact solutions for nonlinear evolution equations. The properties of some periodic-like and soliton-like solution for this system are shown by some figures.  相似文献   

8.
The scope of this paper is evaluating an oscillation system with nonlinearities, using a periodic solution called amplitude–frequency formulation, such as the motion of a rigid rod rocking back. The approach proposes a choice to overcome the difficulty of computing the periodic behavior of the oscillation problems in engineering. We are to compare the solutions results of this method with the exact ones in order to validate the approach and assess the accuracy of the solutions. This method has a distinguished feature, which makes it simple to use and agree with the exact solutions for various parameters. Moreover, it is perceived that with one‐step iteration high accuracy of the solution will be achieved. We may apply the results of the solution to explain some of the practical physical problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
We consider two numerical solution approaches for the Dym initial value problem using the reproducing kernel Hilbert space method. For each solution approach, the solution is represented in the form of a series contained in the reproducing kernel space, and a truncated approximate solution is obtained. This approximation converges to the exact solution of the Dym problem when a sufficient number of terms are included. In the first approach, we avoid to perform the Gram-Schmidt orthogonalization process on the basis functions, and this will decrease the computational time. Meanwhile, in the second approach, working with orthonormal basis elements gives some numerical advantages, despite the increased computational time. The latter approach also permits a more straightforward convergence analysis. Therefore, there are benefits to both approaches. After developing the reproducing kernel Hilbert space method for the numerical solution of the Dym equation, we present several numerical experiments in order to show that the method is efficient and can provide accurate approximations to the Dym initial value problem for sufficiently regular initial data after relatively few iterations. We present the absolute error of the results when exact solutions are known and residual errors for other cases. The results suggest that numerically solving the Dym initial value problem in reproducing kernel space is a useful approach for obtaining accurate solutions in an efficient manner.  相似文献   

10.
The active-set Newton method developed earlier by the authors for mixed complementarity problems is applied to solving the quadratic programming problem with a positive definite matrix of the objective function. A theoretical justification is given to the fact that the method is guaranteed to find the exact solution in a finite number of steps. Numerical results indicate that this approach is competitive with other available methods for quadratic programming problems.  相似文献   

11.
A nucleotide sequence can be considered as a realization of the non-equal-probability independently and identically distributed (niid) model. In this paper we derive the exact distribution of the occurrence number for each K-tuple with respect to the niid model by means of the Goulden-Jackson cluster method. An application of the probability function to get exact expectation curves [9] is presented, accompanied by comparison between the exact approach and the approximate solution.Received October 31, 2004  相似文献   

12.
We present sample size determination using exact approaches for testing the ratio of incidence rates from a two-arm non-inferiority trial. The first approach is the exact conditional approach by treating the total number of events from two groups fixed, and the other is the exact unconditional approach based on maximization. Exact approaches guarantee the type I error rate which is often not satisfied in the commonly used asymptotic approaches on the basis of the corresponding limiting distributions of test statistics. We provide tables for sample size determination in commonly used cases in practice, and an example is used to show the application of these exact approaches. Sample size comparison using different exact approaches concludes that the exact unconditional approach based on the Wald-type test statistic has good performance in balanced studies.  相似文献   

13.
This paper presents a parallel hybrid exact multi-objective approach which combines two metaheuristics – a genetic algorithm (GA) and a memetic algorithm (MA), with an exact method – a branch and bound (B&B) algorithm. Such approach profits from both the exploration power of the GA, the intensification capability of the MA and the ability of the B&B to provide optimal solutions with proof of optimality. To fully exploit the resources of a computational grid, the hybrid method is parallelized according to three well-known parallel models – the island model for the GA, the multi-start model for the MA and the parallel tree exploration model for the B&B. The obtained method has been experimented and validated on a bi-objective flow-shop scheduling problem. The approach allowed to solve exactly for the first time an instance of the problem – 50 jobs on 5 machines. More than 400 processors belonging to 4 different administrative domains have contributed to the resolution process during more than 6 days.   相似文献   

14.
《Optimization》2012,61(3):391-400
Combining an exact method with a heuristic approach possibilities for solving linear mixed integer optimization problems are investigated. For the considered exact method numerical results with problems from the practice are given. Proper heuristic methods are the interior path methods [2] for which numerical experiences are well-known or the so-called geometric approach [8], Deriving of sufficient conditions for the existence of feasible solutions is possible.  相似文献   

15.
This paper presents a novel approach for the analysis of a fourth-order parabolic equation dealing with vibration of beams by using the decomposition method. In this regard, a general approach based on the generalized Fourier series expansion is applied. The obtained analytic solution is simplified in terms of a given set of orthogonal basis functions. The result is compared with the classical modal analysis technique which is widely used in the field of structural dynamics. It is shown that the result of the decomposition method leads to an exact closed-form solution which is equivalent to the result obtained by the modal analysis method. Some examples are given to demonstrate the validity of the present study.  相似文献   

16.
In this work we will consider He's variational iteration method for solving second-order initial value problems. We will discuss the use of this approach for solving several important partial differential equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This procedure is a powerful tool for solving the large amount of problems. Using the variational iteration method, it is possible to find the exact solution or an approximate solution of the problem. This technique provides a sequence of functions which converges to the exact solution of the problem. Our emphasis will be on the convergence of the variational iteration method. In the current paper this scheme will be investigated in details and efficiency of the approach will be shown by applying the procedure on several interesting and important models.  相似文献   

17.
In this paper, a collocation method based on the Bessel polynomials is presented for the approximate solution of a class of the nonlinear Lane–Emden type equations, which have many applications in mathematical physics. The exact solution can be obtained if the exact solution is polynomial. In other cases, such as an increasing number of nodes, a good approximation can be obtained with applicable errors. In addition, the method is presented with error and stability analysis. The numerical results show the effectiveness of the method for this type of equations. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
An approach based on Newton’s method is proposed for solving the Riemann problem for media with normal equations of state. The Riemann integrals are evaluated using a cubic approximation of an isentropic curve that is superior to the Simpson method in terms of accuracy, convergence rate, and efficiency. The potentials of the approach are demonstrated by solving problems for media obeying the Mie-Grüneisen equation of state. The algebraic equation of the isentropic curve and some exact solutions for configurations with rarefaction waves are explicitly given.  相似文献   

19.
In this paper, a kind of explicit exact solution of nonlinear differential equations is obtained using a new approach applied in this case to look for exact solutions of the Duffing and double-well Duffing equations. The new proposed procedure is applied by using a quotient trigonometric function expansion method. The method can also be easily applied to solve other nonlinear differential equations.  相似文献   

20.
《Fuzzy Sets and Systems》1987,21(2):183-199
This paper addresses the computational aspect of the extension principle when the principle is applied to algebraic mappings and, in particular, to weighted average operations in risk and decision analysis. A computational algorithm based on the α-cut representation of fuzzy sets and interval analysis is described. The method provides a discrete but exact solution to extended algebraic operations in a very efficient and simple manner. Examples are given to illustrate the method and its relation to other discrete methods and the exact approach by non-linear programming. The algorithm has been implemented in a computer program which can handle very general extended algebraic operations on fuzzy numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号