首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the structures of erbium-doped titanium oxide xerogel/porous anodic alumina manifest strong photoluminescence at 1.53 µm due to the 4I13/24I15/2 transition of Er3+ ions in the xerogel. In the titanium oxide xerogel, two phases — anatase and rutile — have been detected by the x-ray analysis method. The luminescence excitation spectrum of erbium at 1.53 µm consists of a set of lines that correspond to the intracenter transitions of Er3+ ions with a maximum band at 524 nm caused by the 4I15/22H11/2 transition. The lifetime of erbium in such structures is 1.8 msec.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 94–98, January–February, 2005.  相似文献   

2.
We obtained porous silicon films modified at room temperature by an Eu3+-containing polymer complex. The most intense photoluminescence of Eu3+ implanted in the porous silicon was observed at the wavelengths of 611, 618, 691, and 704 nm. In this case, the intensity of the intrinsic photoluminescence of strongly irradiated specimens of porous silicon decreased, while the intensity of weakly emitting films multiply increased. An investigation of the photoexcitation spectra made it possible to establish the effect of Eu3+-containing complexes on the mechanism underlying the excitation of photoluminescence of porous silicon. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 499–501, July–August, 1997.  相似文献   

3.
Porous silicon surface was modified by photochemically activated hydrosilylation reaction with permethyl-6I-alkenoylamino-6I-deoxy-β-cyclodextrins terminated with linear alkenoyl spacers of various lengths. As compared to unmodified surface, derivatized surfaces revealed modified photoluminescence response in the presence of controlled amounts of various organic molecules in gas and liquid phase. For the selected set of analytes we observed most significant modification of photoluminescence response for aromatic compounds what corresponds to optimum molecular size for strong host–guest interaction with β-cyclodextrin cavity. Aliphatic compounds quenched photoluminescence from both unmodified and surface modified porous silicon. For low gas phase concentrations of aromatic analytes β-cyclodextrin modified porous silicon revealed photoluminescence enhancement, at higher concentrations common photoluminescence quenching was observed. The size-dependent host–guest interaction between β-cyclodextrin cavity and detected molecule was observed in photoluminescence quenching in the presence of aliphatic molecules in liquid phase. The role of the strength of host–guest interactions between detected analytes and β-cyclodextrin cavity on photoluminescence sensor response is discussed.  相似文献   

4.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

5.
Photoluminescence properties of thenardite activated with Eu   总被引:1,自引:0,他引:1  
Na2SO4:Eu phosphors were prepared by heating pure natural thenardite with EuF3 at 900 °C for 20 min in air. The photoluminescence (PL) and excitation spectra of as-prepared and γ-ray-irradiated phosphors were observed at 300 K. The PL spectrum under 394 nm excitation consisted of strong narrow bands with peaks at 579, 592, 616, 652, 697 and 741 nm, assigned to the 5D07FJ (J=0, 1, 2, …, 5) transitions, respectively, within Eu3+. The PL spectrum under 340 nm excitation consisted of a broad Eu2+ band with a peak at 435 nm. The excitation spectrum obtained by monitoring the violet luminescence consisted of a weak band with a peak at approximately 261 nm and a broad Eu2+ band with a peak at approximately 338 nm. The relative efficiency of the violet luminescence of the γ-ray-irradiated phosphor at the exposure of 46 kGy increased up to 3.0 times that of the unirradiated phosphor. The enhancement of violet luminescence by γ-ray irradiation was ascribed to the conversion of Eu3+ to Eu2+ in Na2SO4.  相似文献   

6.
The time resolved emission spectrum of the blue band of Ti:sapphire laser crystal has been investigated as a function of temperature (range 10–290 K) and UV (266 nm) laser excitation intensity. Two blue emission bands, centred at 420 nm and 460 nm, have been detected. The 420 nm band is attributed to Ti4+ centres whereas the 460 nm one is proposed to be due to Ti3+ ions. The evolution of the emission spectrum vs the UV excitation intensity has shown that the concentration of Ti4+ centres is increased under UV irradiation at the cost of the centres responsible for the 460 nm band.  相似文献   

7.
An historic Strontianite-type specimen from Strontian, Scotland, UK, was characterized to broaden our knowledge on luminescence properties of common carbonates. These fibrous aggregates are Strontianite (SrxCa1−xCO3) with circa 6% of CaO, interfacial water, hydrosilicate anions and substitutional divalent cations, e.g., Ca2+, Mn2+, Fe2+ in structural Sr2+ positions. The specimen was analyzed by X-ray Fluorescence Spectrometry (XRF), Environmental Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectroscopy (ESEM-EDS) probe, Spatially-resolved Cathodoluminescence under the Scanning Electron Microscope (SEM-CL), Differential-Thermal Analyses (DTA), Thermogravimetry (TG), Thermoluminescence (TL), Radioluminescence (RL) and High Resolution Spectra Thermoluminescence (3DTL), to gain an overview of the spectral emissions, the defect linkages were modified by heating from room temperature (RT) up to 500 °C. Substitutional transition elements are probably responsible for the spectral emission bands from 500 nm to 800 nm and hydrous molecules from 300 nm to 400 nm. DTA–TG analyses performed on little chips, to preserve the fiber interfaces coherence, exhibit minor endothermic peaks attributed to outflow of water groups in fiber interfaces. Both, CL and RL curves show common spectral positions but UV–blue and red emission intensities are counterbalanced since electron irradiation reduces the UV–blue emissions while X-irradiation increases them. The TL curves show a top thermal limit at 300 °C for the 300–400 nm TL emissions which become irreversibly destroyed, whereas the longer wavelength region emits at higher temperature. The non-reversible changes observed in the 320 nm and 360 nm bands during the spectra 3DTL emission could be linked with non-bridging oxygen defects, protons and hydroxyl groups and the red emissions to the 4G (4T1g)–6S Mn2+ ion transition. Following assignations and similar spectral CL patterns of Russian Strontianite samples, the emission-defect assignments: Dy3+ 480 nm; Tb3+ 540 nm; Dy3+ 580 nm and Sm3+ 640 nm cannot be disregarded.  相似文献   

8.
The influence of surface treatment of porous silicon in iodine-containing solutions on its photoluminescent properties has been investigated. The porous silicon samples were prepared by anodizing in HF-based electrolytes and placed in fluoride-hydrogen solutions with the addition of iodine immediately after their formation. The surface condition was controlled by IR Fourier spectroscopy methods in the 400–4000-cm–1 range. It has been established that the result of the porous silicon treatment in iodine-containing solutions is a decrease in the intensity of Si–H x -bonds without the appearance of additional vibrations in the range under investigation. At the same time, such a treatment substantially affects the spectrum and intensity of porous silicon photoluminescence and increases its stability in subsequent storage. The possible reasons for the revealed phenomena are discussed.  相似文献   

9.
The photoluminescence (PL) characteristics of co-sputtered Ge–Si duplex nanocrystal films were examined under excitation by a 325-nm HeCd laser, combined with Raman and Fourier-transform infrared reflection spectra analysis. A broad visible PL spectrum from the as-deposited Ge–Si nanocrystal films was observed in the wavelength range 350–700 nm. Basically, the PL spectrum can be considered to consist of two distinct parts originating from different emission mechanisms: (i) the spectrum in the range 350–520 nm, consisting of characteristic double peaks at 410 and 440 nm with PL intensities decreasing after vacuum annealing, probably due to vacancy defects in Si nanocrystals; and (ii) the spectrum in the range 520–700 nm, consisting of a characteristic peak at 550 nm with a PL intensity not affected by vacuum annealing, probably due to Ge-related interfacial defects. No size dependence of PL peak energy expected from quantum confinement effects was observed in the wavelength range investigated. However, with an increase of crystal size, the PL peak intensity in the blue zone decreased. The PL intensity is found to be strongly affected by silicon concentration. A film heated in air has a different PL mechanism from the as-deposited and vacuum-annealed films. PACS 78.67.Bf; 81.05.Cy; 81.15.Cd  相似文献   

10.
ZnS nanoparticles with Co2+ doping have been prepared at room temperature through a soft chemical route, namely the chemical co-precipitation method. The nanostructures of the prepared nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected-area electron diffraction (SAED), and UV-vis spectrophotometer. The sizes of as prepared nanoparticles are found to be in 1–4 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample exhibits emission in the blue region with multiple peaks under UV excitation. On the other hand, in the Co2+ doped ZnS samples enhanced visible light emissions with emission intensities of ~35 times larger than that of the undoped sample are observed under the same UV excitation wavelength of 280 nm.  相似文献   

11.
Red luminescence (at wavelength about 622 nm) from Eu3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and liquid helium temperatures. The substantial influence of energy transfer processes between the host and Eu3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only polarized, excited pulsed XeII laser light (λ=714 nm) gives substantial luminescence with efficiency up to 14.3%. The role of phonon-relaxation subsystem in the observed luminescence is discussed.  相似文献   

12.
Infra-red luminescence (at wavelengths about 1600 and 2500 nm) from Er3+ ions embedded in PbO–Bi2O3–Ga2O3–BaO glass hosts is reported for room and helium liquid temperatures. The substantial influence of energy transfer processes between the host and Er3+ ions is shown experimentally through the dependences of photoluminescence on light polarization and excitation wavelength. Only the application of the polarized pumping YAG–Nd laser beam (λ=1060 nm) stimulates substantial luminescence with quantum efficiency up to 24%. The role of phonon-relaxation subsystem in the observed luminescence is discussed.  相似文献   

13.
Fabrication and properties of ZnO:Cu and ZnO:Ag thin films   总被引:1,自引:0,他引:1  
Thin films of ZnS and ZnO:Cu were grown by an original metal–organic chemical vapour deposition (MOCVD) method under atmospheric pressure onto glass substrates. Pulse photo-assisted rapid thermal annealing of ZnO:Cu films in ambient air and at the temperature of 700–800 C was used instead of the common long-duration annealing in a vacuum furnace. ZnO:Ag thin films were prepared by oxidation and Ag doping of ZnS films. At first a closed space sublimation technique was used for Ag doping of ZnO films. The oxidation and Ag doping were carried out by a new non-vacuum method at a temperature >500 C. Crystal quality and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL). It was found that the doped films have a higher degree of crystallinity than undoped films. The spectra of as-deposited ZnO:Cu films contained the bands typical for copper, i.e. the green band and the yellow band. After pulse annealing at high temperature the 410 and 435 nm photoluminescent peaks were observed. This allows changing of the emission colour from blue to white. Flat-top ZnO:Ag films were obtained with the surface roughness of 7 nm. These samples show a strong ultraviolet (UV) emission at room temperature. The 385 nm photoluminescent peak obtained is assigned to the exciton–exciton emission.  相似文献   

14.
Y2(1-x)Gd2xSiWO8:A (0x1; A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films have been prepared on silica glass substrates through the sol–gel dip-coating process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscope (AFM), scanning electron microscopy (SEM) and photoluminescence spectra as well as lifetimes were used to characterize the resulting films. The results of the XRD indicated that the films began to crystallize at 800 °C and crystallized completely at 1000 °C. The AFM and SEM study revealed that the phosphor films, which mainly consisted of closely packed grains with an average size of 90–120 nm with a thickness of 660 nm, were uniform and crack free. Owing to an efficient energy transfer from the WO42- groups to the activators, the doped lanthanide ion (A) showed its characteristic ff transition emissions in crystalline Y2(1-x)Gd2xSiWO8 (0x1) films. The optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined to be 21, 5, 3 and 7 mol % of Y3+ in Y2SiWO8 films, respectively. The above lanthanide ions showed higher emission intensity for 02(1-x)Gd2xSiWO8 films. PACS 73.63.Bd; 78.55.Hx; 78.66.Nk; 81.15.Lm; 81.20.Fw  相似文献   

15.
High-intensity Er3+ photoluminescence at wavelength λ=1510–1535 nm and with a quantum yield of up to 10% was revealed under nitrogen laser pumping (λ=327 nm) in pseudoamorphous GaN films codoped by Er and oxygen. Because Er3+ ions do not have a resonant absorption level at this wavelength, the erbium ions are excited only via inter-and intraband recombination energy transfer. A distinctive feature of the Er3+ spectrum is its broadening caused by an appreciable contribution of “hot” transitions from the Stark components of the 4 I 13/2 multiplet. At liquid-nitrogen temperature, this contribution is dominant. At 77 K, an instability of the spectrum in the form of optical noise was observed in the 1550-to 1570-nm region. Temperature quenching of the photoluminescence was virtually absent. The high Er3+ photoluminescence intensity was achieved through proper choice of the multistage (cumulative) anneal regime.  相似文献   

16.
Y3−xMg2AlSi2O12:Cex3+ (x=0.015, 0.03 and 0.06) phosphors possessing garnet crystal structure were synthesized by the sol–gel combustion technique. The samples were characterized by application of powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, thermal quenching (TQ) and scanning electron microscopy (SEM). Moreover, luminous efficacies (LE), color points and quantum efficiencies (QE) were calculated. Optical properties were studied as a function of Ce3+ concentration and annealing temperature. XRD analysis revealed that sintering of polycrystalline Y3Mg2AlSi2O12:Ce3+ powders at 1550 °C results in nearly single-phase garnet materials. Phosphors showed broad emission band in the range of 500–750 nm and had the maximum intensity at 600 nm, which results in strongly red-shifted phosphors compared with conventional YAG:Ce phosphors emitting at 560 nm. However, strong concentration quenching has also been observed, probably due to increased Stokes shift.  相似文献   

17.
A red-emitting phosphor of Eu3+-doped calcium–tellurium–zinc oxide, Ca3Te2(ZnO4)3, with a garnet-type structure was synthesized by high temperature solid-state reactions. This phosphor exhibited a strong red emission. The photoluminescence excitation spectrum showed that Ca3Te2(ZnO4)3:Eu3+ can be effectively excited by UV–visible light. The property of long-wavelength excitation for this material has a benefit as a red phosphor in application of white light-emitting diodes. The colour coordinates were calculated. The excitation and emission spectra and luminescence decay curves were obtained using a pulsed, tunable, narrowband dye laser. Crystallographic sites and charge compensation mechanism of Eu3+ ions were discussed. The emission line from Eu3+ in intrinsic crystallographic site in the lattice was located at 579.56 nm. The emission line from Eu3+ in another disturbed site, which is created by the defects created by the charge-compensation, was located at 580.88 nm. The disordered crystallographic sites of Eu3+ are benefit for their strong red luminescence corresponding to the 5D07F2 transition.  相似文献   

18.
The purpose of the present study is to develop an understanding of photoluminescence properties of Dy3+, Mn2+ or Gd3+doped NaCaPO4 phosphors, which have served as efficient phosphors in many industrial applications. The phase formation was confirmed by the X-ray powder diffraction (XRD) measurement. Photoluminescence (PL) excitation spectrum measurement of NaCaPO4:Dy3+ shows this phosphor can be efficiently excited by near-ultraviolet (UV) light from 300 to 400 nm and presents dominant luminescence band centered at 480 nm (blue) and 573 nm (yellow). The PL excitation of NaCaPO4:Mn2+ and Gd3+ under UV wavelength shows the emissions at 520 and 313 nm, respectively. A scanning electron microscope (SEM) shows an average crystallite size in sub-micrometer range. The obtained results show that the phosphors have the potential for application in the lamp industry and medical applications.  相似文献   

19.
A typical porous structure with pores diameters ranging from 10 to 50 nm has been obtained by electrochemical etching of (1 0 0) heavily doped p-type GaAs substrate in HF solution. Room temperature photoluminescence (PL) investigations of the porous GaAs (π-GaAs) reveal the presence of two PL bands, I1 and I2, located at 1.403 and 1.877 eV, respectively. After GaAs capping, the I1 and I2 PL bands exhibit opposite shift trends. However, the emission efficiency of these two bands is not strongly modified. Low temperature PL of capped porous GaAs versus injection levels shows that the I1 PL band exhibits a red shift while the I2 PL band exhibits a blue shift with increasing injection levels. The I2 PL band intensity temperature dependence shows an anomalous behaviour and its energy location shows a blue shift as temperature increases. The observed PL bands act independently and are attributed to electron – hole recombination in porous GaAs and to the well-known quantum confinement effects in GaAs nanocrystallites. The I2 PL band excitation power and temperature dependencies were explained by the filling effect of GaAs nanocrystallites energy states.  相似文献   

20.
The near band edge photoluminescence (–870 nm) at 300 K of semi-insulating and p-type GaAs, a potentially useful tool for GaAs wafer mapping, decreases with time under illumination from the 514 nm line of an Ar+ laser. The photoluminescence bleaching has been studied by optical and photo Hall-effect techniques. It recovers only partially on a time scale of days and does not show a distinct intensity threshold behavior. From lifetime measurements and experiments on samples covered with epitaxial layers of GaAs x P1–x or Si3N4 it is concluded that creation of surface recombination centers causes the PL bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号