首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

2.
We consider the integral convolution equation on the half-line or on a finite interval with kernel $$K(x - t) = \int_a^b {e^{ - \left| {x - t} \right|s} d\sigma (s)} $$ with an alternating measure under the conditions $$K(x) > 0, \int_a^b {\frac{1}{s}\left| {d\sigma (s)} \right| < + \infty } , \int_{ - \infty }^\infty {K(x)dx = 2} \int_a^b {\frac{1}{s}d\sigma (s) \leqslant 1} .$$ The solution of the nonlinear Ambartsumyan equation $$\varphi (s) = 1 + \varphi (s) \int_a^b {\frac{{\varphi (p)}}{{s + p}}d\sigma (p)} ,$$ is constructed; it can be effectively used for solving the original convolution equation.  相似文献   

3.
4.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

5.
Estimates are given for the measure of a section of an arbitrary straight line of the set $$E_\delta = \left\{ {z:\left| {P' {{\left( z \right)} \mathord{\left/ {\vphantom {{\left( z \right)} {\left( {nP \left( z \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {nP \left( z \right)} \right)}} \leqslant \delta } \right|} \right\} \left( {\delta > 0} \right)$$ where P (z) is a polynomial of degree n. THEOREM. Suppose P (x) = (x ? x1) ... (x ? xn) is a polynomial with real zeros. Then, for any δ > 0, on any intervala ?x ?b, containing all of the xk (k=1, 2, ..., n), outside an exceptional set Eδ?[a,b] such that $$mes E_\delta \leqslant \left( {\sqrt {1 + \delta ^2 \left( {b - a} \right)^2 } - 1} \right)/\delta $$ , we have the inequality $$\left| {P' {{\left( x \right)} \mathord{\left/ {\vphantom {{\left( x \right)} {\left( {nP \left( x \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {nP \left( x \right)} \right)}}} \right| > \delta $$ . A similar estimate is given for polynomials whose roots lie either in Imz ? 0 or in Imz ? 0.  相似文献   

6.
Изучается ограничен ность псевдодиффере нциальных операторов на \(L^2 (R^n )\) и на пр остранствах Харди в \(R^n \) . Пусть \(D_k = \{ \xi \in R^n :2^{k - 1} \leqq \left| \xi \right|< 2^k \} , k = 1,2,3, \ldots ,\) и \(D_0 = \{ \xi \in R^n :\left| \xi \right|< 1\} \) . Псевдодиффер енциальный операторP с символом p определяется соотно шением $$Pf(x) = \int\limits_{R^n } {e^{ix \cdot \xi } p(x,\xi )\hat f(\xi )d\xi ,x \in R^n .} $$ Будем говорить, что p пр инадлежит классу \(\bar S_{\varrho ,} {}_\delta (M,N), 0 \leqq \delta ,\varrho \leqq 1\) , ес ли $$\left| {D_x^a p(x,\xi )} \right| \leqq C_a (1 + \left| \xi \right|)^{\delta \left| a \right|} , x,\xi \in R^n ,\left| a \right| \leqq M,$$ и $$\int\limits_{D_k } {\left| {D_x^a D_\xi ^\beta p(x,\xi )} \right|d\xi \leqq C_{a\beta } 2^{kn} 2^{k(\delta |a| - \varrho |\beta |)} , x} \in R^n , k = 0,1,2, \ldots ;|a| \leqq M, |\beta | \leqq N.$$ Изучаются условия, ко торым должны удовлет ворять ?. δ,M иN, чтобы для каждого символа \(p \in \bar S_\varrho , {}_\delta (M,N)\) соответствующий оп ераторP был ограниче н на \(L^2 (R^n )\) . Далее, пусть \(p \in S_\varrho , {}_\delta \) , если дл я всех мультииндексо в а и β выполнено условие $$|D_x^a D_\xi ^\beta p(x,\xi )| \leqq C_{a\beta } (1 + |\xi |)^{\delta |\alpha | - \varrho |\beta |} , x,\xi \in R^n .$$ Доказывается, что при 0≦δ<1 операторP отображ ает пространство Харди \(H^p (R^n )\) в локальное пространство Харди ? p , если символp принадл ежит классуS 1, δ.  相似文献   

7.
8.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

9.
In this note we show that an infinitely divisible (i.d.) distribution function F is Poisson if and only if it satisfies the conditions F(+0) > 0, for any 0 < ∈ < 1 $$\int_{ - \infty }^{I - E} {\frac{{\left| x \right|}}{{1 + \left| x \right|}}} dF = 0$$ and for any 0 < β < 1 $$\int_0^\infty {e^{\alpha xln(x + 1)} } dF< \infty $$   相似文献   

10.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

11.
12.
A control system \(\dot x = f\left( {x,u} \right)\) ,u) with cost functional $$\mathop {ess \sup }\limits_{T0 \leqslant t \leqslant T1} G\left( {x\left( t \right),u\left( t \right)} \right)$$ is considered. For an optimal pair \(\left( {\bar x\left( \cdot \right),\bar u\left( \cdot \right)} \right)\) ,ū(·)), there is a maximum principle of the form $$\eta \left( t \right)f\left( {\bar x\left( t \right),\bar u\left( t \right)} \right) = \mathop {\max }\limits_{u \in \Omega \left( t \right)} \eta \left( t \right)f\left( {\bar x\left( t \right),u} \right).$$ By means of this fact, it is shown that \(\eta \left( t \right)f\left( {\bar x\left( t \right),\bar u\left( t \right)} \right)\) is equal to a constant almost everywhere.  相似文献   

13.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

14.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

15.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

16.
Let $h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $ ( $(i = \sqrt { - 1;} t,x$ -real variables). It is proved that in the rectangle $D: = \left\{ {(t,x):0< t< 1,\left| x \right| \leqslant \frac{1}{2}} \right\}$ , the function h satisfies the followingfunctional inequality: $\left| {h(t,x)} \right| \leqslant \sqrt t \left| {h\left( {\frac{1}{t},\frac{x}{t}} \right)} \right| + c,$ where c is an absolute positive constant. Iterations of this relation provide another, more elementary, proof of the known global boundedness result $\left\| {h; L^\infty (E^2 )} \right\| : = ess sup \left| {h(t,x)} \right|< \infty .$ The above functional inequality is derived from a general duality relation, of theta-function type, for solutions of the Cauchy initial value problem for Schrödinger equation of a free particle. Variation and complexity of solutions of Schrödinger equation are discussed.  相似文献   

17.
The nonparametric regression problem has the objective of estimating conditional expectation. Consider the model $$Y = R(X) + Z$$ , where the random variableZ has mean zero and is independent ofX. The regression functionR(x) is the conditional expectation ofY givenX = x. For an estimator of the form $$R_n (x) = \sum\limits_{i = 1}^n {Y_i K{{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} $$ , we obtain the rate of strong uniform convergence $$\mathop {\sup }\limits_{x\varepsilon C} \left| {R_n (x) - R(x)} \right|\mathop {w \cdot p \cdot 1}\limits_ = o({{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } \mathord{\left/ {\vphantom {{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } {\beta _n \log n}}} \right. \kern-\nulldelimiterspace} {\beta _n \log n}}),\beta _n \to \infty $$ . HereX is ad-dimensional variable andC is a suitable subset ofR d .  相似文献   

18.
It is shown that the solutions of a nonlinear stationary problem for the Navier-Stokes equations in a bounded domain Ω ? ?3 with boundary conditions $\vec \upsilon \left| {_{\partial \Omega } } \right. = \vec a(x)$ satisfy the inequality $\left. {_{x \in \Omega }^{\sup } } \right|\left. {\vec v(x)} \right| \leqslant c\left( {\left. {_{x \in \partial \Omega }^{\sup } } \right|\left. {\vec a(x)} \right|} \right)$ for arbitrary Reynolds numbers. Bibliography: 9 titles.  相似文献   

19.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

20.
В данной работе рассм атриваются классы фу нкцийf(z), голоморфные в област иa (?∞<a<b≦+∞) приp≧1 иs≧0, и у довлетворяющие одному из следующих условий:
  1. Еслиb≦+∞, то $$\int\limits_a^b {(\int\limits_{ - \infty }^{ + \infty } {\left| {f\left( {x + iy} \right)} \right|^p } dy)^s dx< + \infty .} $$
  2. Еслиb=+∞, иa=0, то $$\int\limits_0^u {(\int\limits_{ - \infty }^{ + \infty } {\left| {f\left( {x + iy} \right)} \right|^p } dy)^s dx \leqq \varrho \left( u \right), u > 0,} $$ где?(u) — функция опред еленного роста.
Результаты работы су щественно обобщают т еорему Пэли—Винера о параме трическом представлений класс аH 2 на полуплоскости.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号