首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The FTIR spectra of pyridinium-betaine of squaric acid in 4000-100 cm(-1) frequency region in solid state were measured. In addition, the structure and harmonic vibrational frequencies of this molecule were theoretically evaluated using restricted Hartree-Fock and B3LYP density functional methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Comparison with the experimental spectra provides important information about the ability of these computational methods to describe the vibrational modes in these highly polar strained ring compounds.  相似文献   

2.
The infrared, the Fourier transform infrared and Fourier transform Raman spectra of p-chlorobenzoic acid (p-CBA) has been recorded in the region 4000-600 cm(-1), 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of p-CBA were obtained by the ab initio HF and DFT (B3LYP) methods with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic-vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

3.
The FT-IR and FT-Raman spectra of 2,3-difluoro phenol (2,3-DFP) has been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,3-DFP were obtained by the ab initio HF and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

4.
In this work, the experimental and theoretical vibrational spectra of pyrazole (PZ) and 3,5-dimethyl pyrazole (DMP) have been studied. FTIR and FT-Raman spectra of the title compounds in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The structural and spectroscopic data of the molecules in the ground state are calculated using density functional methods (B3LYP) with 6-311+G** basis set. The vibrational frequencies are calculated and scaled values are compared with experimental FTIR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete vibrational assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SM) method. 13C and 1H NMR chemical shifts results are compared with the experimental values.  相似文献   

5.
The FTIR and FT-Raman spectra of 2,4-dichloro-6-nitrophenol (2,4-DC6NP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of (2,4-DC6NP) were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

6.
FT-IR and Raman spectra of 5-o-tolyl-2-pentene (OTP) have been experimentally reported in the region of 4000-10 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of cis and trans isomers of OTP (C12H16) have been theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31G(d) and 6-31++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated. Comparison between the experimental and theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting vibrational wavenumbers and trans isomer is supposed to be the most stable form of OTP molecule.  相似文献   

7.
The FTIR and FT-Raman spectra of 2-amino-4,6-dimethoxypyrimidine (2A46DMP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2A46DMP were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

8.
The FT-IR and FT-Raman spectra of 3,4-dimethylbenzaldehyde (3,4-DMB) has been recorded in the region 4000-400 and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 3,4-DMB were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-311G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

9.
The FTIR spectra (4000-100 cm(-1)) and Raman spectra (3500-30 cm(-1)) of 2-[5,5-dimethyl-3-(2-phenyl-vinil)-cyclohex-2-enylidene]-malononitrile in solid state were measured. In addition, the structure and harmonic vibrational frequencies of this molecule were theoretically evaluated using B3LYP density functional methods. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Bond length alternation (BLA) was established. Comparison with the experimental spectra provides important information about the ability of this computational method to describe the vibrational modes in this type of "push-pull" systems with potential non-linear optical applications.  相似文献   

10.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

11.
The FT-IR and FT-Raman spectra of 2-bromo-4-chlorotoluene (2B4CT) molecule have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Optimized geometrical structures, harmonic vibrational frequencies, intensities, reduced mass, force constants and depolarization ratio have been computed by the B3 based (B3LYP) density functional methods using 6-31+G(d,p) and 6-311++G(d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analysed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the values of electric dipole moment (μ) and the first-order hyperpolarizability (β) of the investigated molecule were computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The influences of bromine atom, chlorine atom and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

12.
IR and Raman spectra of beta-d-allose, alpha-d-talose and beta-d-allose O-D(5) have been recorded in the 4000-400 cm(-1) and in the 4000-20 cm(-1) regions. These spectra constitute the experimental support that allows to reproduce theoretically the vibrational frequencies and to establish a force field for these saccharides through a normal coordinate analysis. For this purpose, a modified UBSFF has been combined with an intermolecular potential energy function that includes the Van der Walls interactions, the electrostatic terms, and an explicit hydrogen bond function. The initial force field parameters are derived either from those of D-glucose or D-galactose and are fitted so as to obtain a good agreement between the calculated and the observed frequencies. The obtained results reproduce the experimental frequencies and in order to test the validity of the obtained force field, it has been applied to beta-D-allose O-D(5).  相似文献   

13.
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

14.
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule.  相似文献   

15.
The FT-IR spectrum of 2,6-di-tert-butyl-4-methylphenol [butylated hydroxy toluene] was recorded in the region 4000-400 cm(-1). The FT-Raman spectrum of butylated hydroxy toluene was also recorded in the region 3500-50 cm(-1). The molecular structure and vibrational frequencies of butylated hydroxy toluene (BHT) have been investigated with combined experimental and theoretical study. Two stable conformers of the title compound were obtained from the result of geometry optimizations of these possible conformers. The conformer 1 is (approximately 2.6 kcal/mol) more stable than conformer 2. Geometry optimizations and vibrational frequency calculations were performed by BLYP and B3LYP methods using 6-31G(d), 6-31G(d,p) and 6-31+G(d,p) as basis sets. The scaled frequencies were compared with experimental spectrum and on the basis of this comparison; assignments of fundamental vibrational modes were examined. Comparison of the experimental spectra with harmonic vibrational wavenumbers indicates that B3LYP/6-31G(d) results are more accurate. Predicted electronic absorption spectra of BHT from TD-DFT calculation have been analyzed and compared with the experimental UV-vis spectrum. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.  相似文献   

16.
In this work, the vibrational spectral analysis was carried out by using Raman and infrared spectroscopy in the range 100-4000 cm(-1) and 50-4000 cm(-1) respectively, for the title molecules. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on Hartee-Fock (HF) and density functional theory (DFT) method and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The effects due to the substitutions of amino group and halogen bond were investigated. The results of the calculations were applied to simulate spectra of the title compounds, which show excellent agreement with observed spectra.  相似文献   

17.
The FTIR and FT-Raman spectra of 2-amino-5-chloropyridine (ACP) has been recorded in the region 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of ACP were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311+G(2df,2p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

18.
The vibrational spectra of 2,3-dihydroxy pyridine (DHP) and 2,4-dihyroxy-3-nitropyridine (DHNP) have been computed using B3LYP methodology and 6-31G** basis set. The solid phase FTIR and FT Raman spectra were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors.  相似文献   

19.
The vibrational spectra of 2-methyl piperazine (2MPZ) have been computed using B3LYP methodology and 6-31G* and 6-31G** basis sets. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. A close agreement was achieved between the observed and calculated frequencies by employing normal coordinate calculations. The observed and simulated spectra were found to be well comparable.  相似文献   

20.
In the present work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of 4-chloro-7-nitrobenzofurazan (NBD-Chloride). The FT-IR (400-4000 cm(-1)) and FT-Raman spectra (50-4000 cm(-1)) of NBD-Chloride were recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of NBD-Chloride in the ground-state have been calculated by using the density functional B3LYP method with 6-311++G (d, p) as higher basis set. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) result in DMSO and CDCl3 solvents complements with each other. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculation results were applied to simulate infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号