首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two in‐line enrichment procedures (large volume sample stacking (LVSS) and field amplified sample injection (FASI)) have been evaluated for the CZE analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal polarity using 20 mM acetic acid–ammonium acetate (pH 5.5) containing 20% ACN as BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) of a water plug followed by 25 s electrokinetic injection (?10 kV) of the sample, and 200 mM formic acid–ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear calibration curves (r2>0.992), limit of detection on standards prepared in Milli‐Q water (49.1–200 μg/L for LVSS and 4.2–48 μg/L for FASI), and both run‐to‐run and day‐to‐day precisions (RSD values up to 15.8% for concentration) were established. Due to the higher sensitive enhancement (up to 310‐fold) achieved with FASI‐CZE, this method was selected for the analysis of HAAs in drinking water. However, for an optimal FASI application sample salinity was removed by SPE using Oasis WAX cartridges. With SPE‐FASI‐CZE, method detection limits in the range 0.05–0.8 μg/L were obtained, with recoveries, in general, higher than 90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE‐FASI‐CZE method was evaluated by analyzing drinking tap water from Barcelona where seven HAAs were found at concentration levels between 3 and 13 μg/L.  相似文献   

2.
To improve the sensitivity of the UV-detection for the determination of trace amounts of albumin by capillary zone electrophoresis (CZE), five on-line preconcentration techniques, including field-amplified sample stacking (FASS), head-column field-amplified sample stacking (HC-FASS), stacking with a polymer solution, dynamic pH junction and large volume sample stacking (LVSS) with reversed polarity, were compared. Sensitivity enhancement factor and reproducibility were two factors that were used to assess the suitability of each method. To minimize protein adsorption on the capillary wall, capillaries were covalently modified with anionic polymer, poly(sulfopropylmethacrylate) coating. All used methods have good reproducibility. The maximum sensitivity enhancement factor (about 67-fold in terms of peak heights) was achieved with LVSS technique. The concentration limit of detection (LOD) (S/N=3) for the human serum albumin obtained with the optimized LVSS approach was 15 microg/ml with UV-detection. The method was further evaluated for the analysis of urine samples with gel-filtration-based sample-desalting procedure.  相似文献   

3.
The reaction between α,α-dialkylated amino acids and amino acid N-carboxyanhydrides is slow leading to low concentrations of products (peptides). The detection by capillary electrophoresis of the analytes contained in such samples is therefore a challenging issue. In this work, on-line sample pre-concentration methods based on field-amplified sample stacking have been implemented and compared. Because of the high ionic strength present in the sample matrix, samples were diluted with an organic solvent prior to analysis to decrease the sample conductivity. Different modes of sample injection (field amplified sample injection (FASI), hydrodynamic normal sample stacking (NSS) or large volume sample stacking (LVSS)) were compared. Pre-concentration factors of 20 for FASI, about 30–40 for NSS and 60 for LVSS were obtained for the analysis of (l,l) dipeptide of valine in a large excess of isovaline and 0.2 M of ionic strength. For LVSS application and resolution optimisation, a new non-covalent coating based on the partial modification of the capillary surface was used to tune the electroosmotic flow magnitude and to pump the sample matrix out of the capillary. This on-line sample pre-concentration step allowed confirming that oligopeptides including α,α-dialkylated amino acids are formed during the reaction between α,α-dialkylated amino acids and N-carboxyanhydride amino acids.  相似文献   

4.
Sun B  Macka M  Haddad PR 《Electrophoresis》2003,24(12-13):2045-2053
Stacking techniques used independently and also with a high-sensitivity cell (HSC) were employed to optimise sensitivity and detection limits in the direct photometric detection of the following eight arsenic species by capillary zone electrophoresis (CZE): arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), p-aminophenylarsonic acid (p-ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA) (target analytes). The stacking mechanisms, optimised stacking and separation conditions, and concentration sensitivity enhancement factors were discussed and compared for (i) normal stacking mode (NSM, sometimes also referred to as field-amplified stacking) in an uncoated fused-silica capillary in the counter-electroosmotic flow (EOF) mode, (ii) large-volume sample stacking (LVSS) with polarity switching, and (iii) the less often applied stacking method of co-EOF NSM stacking with EOF reversal using a poly(diallydimethylammonium chloride) (PDDAC)-coated capillary. The optimal injection volumes were 7.4, 60 and 17.2% of the total capillary volume, for the above three methods, respectively. LVSS with polarity switching gave the lowest limit of detection (LOD). The use of the HSC further reduced the LOD of each target analytes by a factor of 5-8 times. By combining LVSS and HSC, LODs of the target analytes could be reduced by a factor of 218-311, to 5.61, 9.15, 11.1, and 17.1 microg/L for As(III), DMA, MMA, and As(V), respectively. The method was demonstrated to be applicable to the determination of the target analytes in tap water and lake water, with recoveries in the range of 89.4-103.3%.  相似文献   

5.
Preconcentration of chemical warfare agent degradation products (alkylphosphonic acids and alkyl alkylphosphonic acids) in low-conductivity matrices (purified water, tap water and local river water) by field-amplified sample stacking (FASS) was developed for capillary electrophoresis (CE) coupled to ion trap mass spectrometry. FASS was performed by adding a mixture of HCOONH(4) and NH(4)OH in appropriate concentrations to the sample. This allowed to control the conductivity and the pH of the sample in order to obtain FASS performances that are independent of analyte concentration. The influence of different parameters on FASS (sample to background electrolyte (BGE) conductivity ratio, injection volume and concentration of BGE) was studied to determine the optimal conditions and was rationalized by using the theoretical model developed by Burgi and Chien. A good correlation was obtained between the bulk electroosmotic velocity predicted by this model and the experimental value deduced from the migration time of the electroosmotic flow marker detected by mass spectrometry (MS). This newly developed method was successfully applied to the analysis of tap water and local river water fortified with the analytes and provided a 10-fold sensitivity enhancement in comparison to the signal obtained without preconcentration procedure. The quite satisfactory repeatability and linearity for peak areas obtained in the 0.5-5 microg mL(-1) concentration range allow quantitative analysis to be implemented. Limits of detection of 0.25-0.5 microg mL(-1) for the alkyl alkylphosphonic acids and of 0.35-5 microg mL(-1) for the alkylphosphonic acids were reached in tap water and river water.  相似文献   

6.
A capillary electrophoresis method is proposed to analyze the four most well-known growth hormone–releasing hormone (GHRH) analogs that are misused by athletes. Dimethyl-β-cyclodextrin used as a chiral selector allowed, for the first time, the separation of those basic peptide analogs, including enantiopeptides (sermorelin and CJC-1293) that differ by the chirality of only one amino acid. To increase the method sensitivity, electrokinetic preconcentration methods have been investigated. The large volume sample stacking with polarity switching (PS-LVSS) method with an injected sample volume corresponding to 80% of the capillary one was found superior to the sweeping in terms of signal enhancement factor (SEF). Acid and organic solvent addition to the sample (0.1 mM phosphoric acid with 30% methanol) led to a twofold signal improvement, when compared to water as a matrix. We increased capillary dimensions to provide a signal enhancement through the injection of a larger sample volume. Finally, using a combination of the optimized PS-LVSS preconcentration with the chiral capillary zone electrophoresis (CZE), the GHRH analogs were separated and limits of detection between 75 and 200 ng/mL were reached. This method was successfully applied to urine after a desalting step. An optimized C18 SPE was used for that purpose in order to provide low sample conductivity (<130 µS/cm) and preserve the efficiency of LVSS preconcentration. SEF of 640 was obtained with desalted urine spiked with sermorelin by comparison to the CZE (without preconcentration) method.  相似文献   

7.
Three on-column preconcentration techniques were compared to analyse a group of nonsteroidal anti-inflammatory drugs (NSAIDs) using micellar electrokinetic capillary chromatography (MEKC) under pH-suppressed electroosmotic flow (EOF) in water samples. The analysed drugs were ibuprofen, fenoprofen, naproxen, ketoprofen, and diclofenac sodium. The micellar background electrolyte (BGE) solution was formed by 75 mM sodium dodecyl sulfate (SDS), 40% (v/v) acetonitrile, and 25 mM sodium phosphate at pH 2.5. When this BGE solution was used the applied voltage was reversed, -10 kV, and the drugs were separated within 20 min. The on-column preconcentration modes, characterised all of them for the sample matrix removal out of the capillary by itself under a reverse potential at the same time as the EOF was reduced, were stacking with reverse migrating micelles (SRMM), stacking with reverse migrating micelles-anion selective exhaustive injection (SRMM-ASEI), and field-enhanced sample injection with reverse migrating micelles (FESI-RMM). The sensitivity was improved up to 154-, 263-, and 63-fold, respectively when it was calculated through the peaks height. The optimised methods were validated with spiked mineral water by combining off-line solid-phase extraction (SPE) and the proposed on-line sample stacking strategies. The detection limits (LODs) of NSAIDs in mineral water were at ng/L levels.  相似文献   

8.
Two in-line preconcentration capillary zone electrophoresis (CZE) methods (field amplified sample injection (FASI) and stacking with sample matrix removal (LVSS)) have been evaluated for the analysis of acrylamide (AA) in foodstuffs. To allow the determination of AA by CZE, it was derivatized using 2-mercaptobenzoic acid. For FASI, the optimum conditions were water at pH > or = 10 adjusted with NH3 as sample solvent, 35 s hydrodynamic injection (0.5 psi) of a water plug, 35 s of electrokinetic injection (-10 kV) of the sample, and 6s hydrodynamic injection (0.5 psi) of another water plug to prevent AA removal by EOF. In stacking with sample matrix removal, the reversal time was found to be around 3.3 min. A 40 mM phosphate buffer (pH 8.5) was used as carrier electrolyte for CZE separation in both cases. For both FASI and LVSS methods, linear calibration curves over the range studied (10-1000 microg L(-1) and 25-1000 microg L(-1), respectively), limit of detection (LOD) on standards (1 microg L(-1) for FASI and 7 microg L(-1) for LVSS), limit of detection on samples (3 ng g(-1) for FASI and 20 ng g(-1) for LVSS) and both run-to-run (up to 14% for concentration and 0.8% for time values) and day-to-day precisions (up to 16% and 5% for concentration and time values, respectively) were established. Due to the lower detection limits obtained with the FASI-CZE this method was applied to the analysis of AA in different foodstuffs such as biscuits, cereals, crisp bread, snacks and coffee, and the results were compared with those obtained by LC-MS/MS.  相似文献   

9.
Several strategies, namely, large volume sample stacking (LVSS), field‐amplified sample injection (FASI), sweeping, and in‐line SPE‐CE, were investigated for the simultaneous separation and preconcentration of a group of parabens. A BGE consisting of 20 mM sodium dihydrogenphosphate (pH 2.28) and 150 mM SDS with 15% ACN was used for the separation and preconcentration of the compounds by sweeping, and a BGE consisting of 30 mM sodium borate (pH 9.5) was used for the separation and preconcentration of the compounds by LVSS, FASI, and in‐line SPE‐CE. Several factors affecting the preconcentration process were investigated in order to obtain the maximum enhancement of sensitivity. The LODs obtained for parabens were in the range of 18–27, 3–4, 2, and 0.01–0.02 ng/mL, and the sensitivity evaluated in terms of LODs was improved up to 29‐, 77‐, 120‐, and 18 400‐fold for sweeping, LVSS, FASI, and in‐line SPE‐CE, respectively. These preconcentration techniques showed potential as good strategies for focusing parabens. The four methods were validated with standard samples to show the potential of these techniques for future applications in real samples, such as biological and environmental samples.  相似文献   

10.
Zhang H  Zhou L  Chen X 《Electrophoresis》2008,29(7):1556-1564
An easy, simple, and highly efficient on-line preconcentration method for polyphenolic compounds in CE was developed. It combined two on-line concentration techniques, large-volume sample stacking (LVSS) and sweeping. The analytes preconcentration technique was carried out by pressure injection of large-volume sample followed by the EOF as a pump pushing the bulk of low-conductivity sample matrix out of the outlet of the capillary without the electrode polarity switching technique using five polyphenols as the model analytes. Identification and quantification of the analytes were performed by photodiode array UV (PDA) detection. The optimal BGE used for separation and preconcentration was a solution composed of 10 mM borate-90 mM sodium cholate (SC)-40% v/v ethylene glycol, without pH adjustment, the applied voltage was 27.5 kV. Under optimal preconcentration conditions (sample injection 99 s at 0.5 psi), the enhancement in the detection sensitivities of the peak height and peak area of the analytes using the on-line concentration technique was in the range of 18-26- and 23-44-fold comparing with the conventional injection mode (3 s). The detection limits for (-)-epigallocatechin (EGC), (-)-epicatechin (EC), (+)-catechin (C), (-)-epigallocatechin gallate (EGCG), and (-)-epicatechin gallate (ECG) were 4.3, 2.4, 2.2, 2.0, and 1.6 ng/mL, respectively. The five analytes were baseline-separated under the optimum conditions and the experimental results showed that preconcentration was well achieved.  相似文献   

11.
Kuo CY  Chiou SS  Wu SM 《Electrophoresis》2006,27(14):2905-2909
This paper describes approaches for large-volume sample stacking (LVSS) with an EOF pumpin CE for the determination of methotrexate (MTX) and its metabolites in human plasma. After pretreatment of plasma through a SPE cartridge, a large sample volume was loaded by hydrodynamic injection (3 psi, 70 s) into the capillary filled with phosphate buffer (70 mM, pH 6.0) containing 0.01% polyethylene oxide. Following removal of a large plug of sample matrix from the capillary using polarity switching (-25 kV), the separation of anionic analytes was subsequently performed without changing polarity again, achieving an improvement of sensitivity of around a 100-fold. The method was applied to therapeutic drug monitoring of MTX in one acute lymphoblastic leukemia patient. This study is one of very few applications showing the feasibility of LVSS in analysis of biological samples by CE.  相似文献   

12.
This paper describes two different approaches for increasing the sensitivity for the analysis of ceftiofur by capillary electrophoresis (CE). Two different techniques based on the introduction of an enlarged volume of sample, namely large volume sample stacking (LVSS) and in-line solid phase extraction (SPE) were studied and compared. LVSS allowed the on-column electrophoretic preconcentration of ceftiofur without modification of the separation capillary. In-line SPE-CE was developed by using a home-made microcartridge that was filled with a reversed-phase sorbent (C18). The microcartridge was coupled in-line near the inlet of the separation capillary. LVSS and in-line SPE-CE allowed automated operation and improved sensitivity for the analysis of ceftiofur with respect to conventional CE. When environmental water samples were analyzed, an additional pretreatment step based on off-line SPE was necessary in both cases to further decrease the detection limits. In terms of sensitivity for the determination of ceftiofur in river water samples, the combination of off-line SPE with in-line SPE-CE was found the most sensitive with a detection limit of 10 ng L−1, whereas the method based on the use of off-line SPE with LVSS presented a detection limit of 100 ng L−1.  相似文献   

13.
《Electrophoresis》2018,39(19):2439-2445
An on‐line large volume sample stacking with polarity switching (LVSS) method was proposed for simultaneously determining lignanoids and ginsenosides in MEEKC. The parameters including the pH value and concentration of buffer solution, SDS, organic modifier, oil phase, running voltage, and temperature as well as injection time, sample matrix, stacking voltage, and time influencing separation and stacking were systematically optimized. The method was verified by performing precision, accuracy, stability, and recovery. Its reliability was proved by separating and quantifying two lignanoids and three ginsenosides in Shengmai injectionSMI. The sensitivity of these compounds was improved by MEEKC‐LVSS method for 6–11 times than conventional MEEKC. Thus, this developed on‐line MEEKC‐LVSS method was sensitive, practical, and reliable.  相似文献   

14.
On-line sample concentration of fast moving inorganic anions by large volume sample stacking (LVSS) and field enhanced sample injection (FESI) with a water plug under acidic conditions is presented. Detection sensitivity enhancements were around 100 and 1000-fold for LVSS and FESI, respectively. However, reproducibility and linearity of response in the LVSS approach is superior compared to the FESI approach.  相似文献   

15.
This paper aimed to build up a sensitive CE method for the analysis of tetracyclines (TCs) antibiotics (including tetracycline, chlorotetracycline, oxytetracycline, and doxycycline) with conventional UV detection. Here, the large volume sample stacking was applied to achieve in capillary preconcentration of the targets. To achieve large volume sample stacking, the essential step was a large volume of sample (around 83.3% of total capillary length from inlet to detection window) hydrodynamically loaded. Then, the reserved voltage was added in order to push the sample matrix out of the capillary. Due to different pH between sample solution (pH 4.6) and BGE (pH 11.0), the cationic TCs would turn into negatively charged while the sample matrix was removing from the capillary. Finally, the anionic TCs were stacked at the inlet for the subsequent separation. Although the loss of sample existed during their charge transformation, the LODs could be improved around 40 times than that obtained by normal hydrodynamic injection CE method. Here, the LODs were in the range of 8.1–14.5 μg/L, around 10 ppb that close to the level by electrochemiluminescence or laser‐induced fluorescence detection of TCs by CE. The precision was characterized by RSDs of migration times and peak areas, which were in the range of 0.19–0.24% and 0.97–2.54%, respectively. The recoveries of the developed method were in the range of 95–112% by spiking TCs in the tap water. The proposed inline preconcentration CE method could be a simple, speed, and sensitive method for the quantitative analysis of TCs.  相似文献   

16.
A capillary electrophoresis method with UV-absorbance detection was studied and optimized for the determination of underivatized amino acids in urine. To improve concentration sensitivity the utility of in-capillary analyte stacking via dynamic pH junction was investigated with phenylalanine (Phe) and tyrosine (Tyr) as model amino acids. Before sample injection, a plug of ammonium hydroxide solution was injected to enable analyte concentration. Samples were 1:1 (v/v) mixed with background electrolyte (1 M formic acid) prior to injection. The effect of the injected sample volume, and the injected ammonium hydroxide volume and concentration on analyte stacking and separation performance was investigated. The optimal volume of ammonium hydroxide depended on the injected sample volume. Using a dynamic pH junction good resolution (1.4) was obtained for a sample injection volume of 10% of the capillary (196 nl) with Phe and Tyr dissolved in water. Limits of detection (LODs) were 0.036 and 0.049 μM for Phe and Tyr, respectively. For urine samples, the optimized procedure comprised a 1.7-nl injection of 12.5% ammonium hydroxide, followed by a 196-nl injection of urine spiked with Phe and Tyr. Satisfactory resolution was obtained and amino acid peak widths at half height were only 1.6 s indicating efficient stacking. Calibration plots for Phe and Tyr in urine showed good linearity (R(2) > 0.96) in the concentration range 10-175 μM, and LODs for Phe and Tyr were 0.054 and 0.019 μM, respectively. RSDs for peak area and migration time for Phe and Tyr were below 7.5% and 0.75%, respectively.  相似文献   

17.
Pai YF  Lin CC  Liu CY 《Electrophoresis》2004,25(4-5):569-577
A wall-coated histidine capillary column was developed for the on-line preconcentration of nonsteroidal anti-inflammatory drugs (NSAIDs) in capillary electrochromatography (CEC). A wide variety of experimental parameters, such as the sample buffer, background electrolyte (BGE) composition, concentration, sample plug lengths, water plug, and the effect of organic modifiers were studied. The relationship between peak height and injection times for the NSAIDs by variation of sample and BGE buffer concentration was investigated. On addition of sodium chloride (0.3-0.6%) to the sample zone, the stacking efficiency was increased. With acetate buffer (100 mM, pH 5.0)/ethanol (20% v/v) as BGE and sample solution in acetate buffer (0.2 mM, pH 5.0)/ethanol (20% v/v)/NaCl (0.3% w/v), NSAIDs could be determined at low microM levels without sample matrix removal. The detection limit was 0.096 microM for indoprofen, 0.110 microM for ketoprofen, 0.012 microM for naproxen, 0.023 microM for ibuprofen, 0.110 microM for fenoprofen, 0.140 microM for flurbiprofen, and 0.120 microM for suprofen. The method could be successfully applied to the simultaneous determination of NSAIDs in urine. The recoveries were better than 82% for all the analytes. The present method enables simple manipulation with UV detection for the determination of NSAIDs at low concentration levels in complex matrix samples.  相似文献   

18.
Fang H  Yang F  Sun J  Zeng Z  Xu Y 《Electrophoresis》2007,28(20):3697-3704
This paper describes a novel method that applies pressure-assisted field-amplified sample injection with reverse migrating micelles (PA-FASI-RMM) for the online concentration of neutral analytes in MEKC with a low-pH BGE. After injection of a plug of water into the separation capillary, negative voltage and positive pressure were simultaneously applied to initialize PA-FASI-RMM injection. The hydrodynamic flow generated by the positive pressure compensated the reverse EOF in the water plug and allowed the water plug to remain in the capillary during FASI with reverse migrating micelles (FASI-RMM) to obtain a much longer injection time than usual, which improved stacking efficiency greatly. Equations describing this injection mode were introduced and were supported by experimental results. For a 450-s online PA-FASI-RMM injection, three orders of magnitude sample enhancement in terms of peak area could be observed for the steroids and an achievement of detection limits was between 1 and 10 ng/mL.  相似文献   

19.
The combination of dynamic pH junction, sweeping (using borate complexation), and large volume sample stacking (LVSS) is investigated as three consecutive steps for on-line focusing in the sensitive quantitation of urinary nucleosides by CE-UVD. A low conductivity aqueous sample matrix free from borate and a high conductivity BGE (containing borate, pH 9.25) are needed to fulfill the required conditions for dynamic pH junction, LVSS, and sweeping. Parameters affecting the separation and the enrichment efficiency are studied such as buffer concentration, separation voltage, capillary temperature, sample composition, and sample injection volume. Prerequisite for the developed strategy is the extraction of the nucleosides from urine using a phenylboronate affinity gel, which is described to be a unique means for the selective enrichment of cis-diol metabolites under alkaline conditions. The impact of ionic constituents remaining in the eluate after extraction on focusing efficiency and resolution is investigated. The developed method is applied to the analysis of blank and spiked urine samples. Fundamental aspects underlying the proposed enrichment procedure are discussed. A detection limit as low as 10 ng mL?1 is achieved. To the best of our knowledge, this LOD represents the lowest LOD reported so far for the analysis of nucleosides using CE with UV detection and provides a comparable sensitivity to CE/MS. Because of the high sensitivity, the proposed method shows a great potential for the analysis of nucleosides in human urine and other types of biological fluids. Schematic presentation of the developed three-step focusing mechanism (combining dynamic pHjunction, sweeping using borate complexation, and LVSS).   相似文献   

20.
A capillary zone electrophoresis (CZE) method was established to determine low concentration nitrate which was online preconcentrated with chloride-induced leading-type sample self-stacking for seawater samples. The sample self-stacking was based on transient isotachophoresis in which chloride served as leading ion, and dihydrogenphosphate in the background electrolyte (0.1 M phosphate) as the terminating one. Due to the small mobility difference between nitrate and chloride, the isotachophoresis time was so long that nitrate could not separate from the rear sharp boundary between chloride and the background electrolyte (BGE) when it migrated to the detection window. A zwitterionic surfactant, 3-(N,N-dimethyldodecylammonio)propane sulfonate was added to the BGE to enlarge the mobility difference for its selective interaction with anions. Thus, a highly conductive sample could be injected in a large volume with about fourfold sensitivity enhancement compared to that of field amplification sample stacking in which nitrate was dissolved in pure water. The relative standard deviations (n=5) of migration time, peak area, peak height were 0.1, 3.0, 1.5%, respectively. The limit of detection (S/N=3) for nitrate was 35 microg/l in seawater samples with relatively low concentration BGE (0.1 M sodium phosphate, pH 6.2). The overall procedure consisting of online preconcentration and separation was as simple as routine CZE except for a slightly longer sample injection time (3-4 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号