首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The dielectric behaviour of frozen aqueous solutions of the monosaccharides glucose, galactose, mannose, ribose and arabinose and the disaccharides cellobiose, lactose and maltose was studied by the depolarization thermocurrent (DTC) method in the temperature range 80–270 K and over a wide range of concentrations (0.0003–1.5 mol/l), to obtain information on the state of water in the solutions. The results show that the saccharides studied can be subdivided into two classes regarding their hydration behaviour. The solutions of glucose, galactose and mannose are characterized by a continuous transition from hydration (i.e. affected by the solute molecule) to free (i.e. non-affected) H2O molecules. The solutions of ribose, arabinose, cellobiose, lactose and maltose are characterized by the presence of two dicrete kinds of H2O molecules, namely free and hydration molecules. These results are discussed in terms of a hydration model.  相似文献   

2.
Molecular dynamics simulations were used to compute the frequency-dependent dielectric susceptibility of aqueous solutions of alanine and alanine dipeptide. We studied four alanine solutions, ranging in concentration from 0.13-0.55 mol/liter, and two solutions of alanine dipeptide (0.13 and 0.27 mol/liter). In accord with experiment we find a strong dielectric increment for both solutes, whose molecular origin is shown to be the zwitterionic nature of the solutes. The dynamic properties were analyzed based on a dielectric component analysis into solute, a first hydration shell, and all remaining (bulk) waters. The results of this three component decomposition were interpreted directly, as well as by uniting the solute and hydration shell component to a "suprasolute" component. In both approaches three contributions to the frequency-dependent dielectric properties can be discerned. The quantitatively largest and fastest component arises from bulk water [i.e., water not influenced by the solute(s)]. The interaction between waters surrounding the solute(s) (the hydration shell) and bulk water molecules leads to a relaxation process occurring on an intermediate time scale. The slowest relaxation process originates from the solute(s) and the interaction of the solute(s) with the first hydration shell and bulk water. The primary importance of the hydration shell is the exchange of shell and bulk waters; the self-contribution from bound water molecules is comparatively small. While in the alanine solutions the solute-water cross-terms are more important than the solute self-term, the solute contribution is larger in the dipeptide solutions. In the latter systems a much clearer separation of time scales between water and alanine dipeptide related properties is observed. The similarities and differences of the dielectric properties of the amino acid/peptide solutions studied in this work and of solutions of mono- and disaccharides and of the protein ubiquitin are discussed.  相似文献   

3.
We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies <1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies >1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network.  相似文献   

4.
New anion-exchange stationary phases On (n = 1, 2 and 3) with a dimethylamino terminal functional group, where n is the number of oxyethylene units [-(CH2CH2O)n-], were prepared by the reaction of chloromethylated porous styrene-divinylbenzene copolymer beads and amines [(CH3)2N-(CH2CH2O)nCH2CH2-N(CH3)2]. HPLC separations of monosaccharides (sorbitol, fucose, glucosamine, mannose, glucose, galactose, fructose, allose and altrose) and disaccharides (trehalose, lactose, cellobiose and maltose) were performed successfully on these stationary phases. The ether group of the stationary phases On was found to affect the separation of carbohydrates.  相似文献   

5.
THz spectroscopy was used to probe changes that occur in the dynamics of the hydrogen bond network upon solvation of alcohol chains. The THz spectra can be decomposed into the spectrum of bulk water, tetrahedral hydration water, and more disordered (or interstitial) hydration water. The tetrahedrally ordered hydration water exhibits a band at 195 cm−1 and is localized around the hydrophobic moiety of the alcohol. The interstitial component yields a band at 164 cm−1 which is associated with hydration water in the first hydration shell. These temperature‐dependent changes in the low‐frequency spectrum of solvated alcohol chains can be correlated with changes of heat capacity, entropy, and free energy upon solvation. Surprisingly, not the tetrahedrally ordered component but the interstitial hydration water is found to be mainly responsible for the temperature‐dependent change in ΔCp and ΔG. The solute‐specific offset in free energy is attributed to void formation and scales linearly with the chain length.  相似文献   

6.
We have studied the influence of the amphiphilic model peptide N-acetyl-leucine-methylamide (NALMA) on the dynamics of water using extended frequency range depolarized light scattering (EDLS), between 0.3 GHz and 36 THz. This technique allowed us to separate solute from solvent dynamics and bulk from hydration water, providing both characteristic times and relative fractions. In the temperature range 5-65 °C, a retardation factor from 9 to 7 is found for water hydrating NALMA. Moreover, in the same range, a hydration number from 62 to 50 is observed, corresponding to more than two hydration layers. This strong perturbation suggests the existence of a collective effect of amphiphilic molecules on surrounding water molecules.  相似文献   

7.
比较了乳糖等3种双糖或核糖等3种单糖及其复配物对近中性范围共轭亚油酸(CLA)形成脂肪酸囊泡(FAV)的影响. 用激光丁达尔效应确定FAV的pH窗口及各相区, 用透射电子显微镜及动态光散射表征其形貌和尺寸, 用浊度法研究了其稳定性, 用等温滴定量热证明各种糖及其复配物与FAV表面的弱非共价键合作用, 并经理论计算获得结合能. 实验和计算结果表明, 各种糖及其复配物均可以双向拓宽CLA形成FAV的pH窗口, 且拓宽其近中性pH窗口的能力按照双糖<单糖≈双糖/单糖≤单糖/单糖的顺序依次增强. 主要归结为单糖在FAV表面的强竞争吸附, 以及双糖可能因多结合位点吸附而减少其自由羟基与环境水分子的缔合作用, 从而影响多羟基小分子依靠自由羟基增强囊泡表面亲水性的效果.  相似文献   

8.
Isobaric dielectric relaxation measurements were performed on seven chosen disaccharides. For five of them, i.e., sucrose, maltose, trehalose, lactulose, and leucrose, we were able to observe the temperature evolution of the structural relaxation process. In the case of the other disaccharides studied (lactose and cellobiose), it was impossible to obtain such information because of the large contribution of the dc conductivity and polarization of the capacitor plates to the imaginary and real part of the complex permittivity, respectively. On the other hand, in the glassy state, two secondary relaxations have been identified in the dielectric spectra of all investigated carbohydrates. The faster one (gamma) is a common characteristic feature of the entire sugar family (mono-, di-, oligo-, and polysaccharide). The molecular origin of this process is still not unambiguously identified but is expected to involve intramolecular degrees of freedom as inferred from insensitivity of its relaxation time to pressure found in some monosaccharides (fructose and ribose). The slower one (labeled beta) was recently identified to be intermolecular in origin (i.e., a Johari-Goldstein (JG) beta-relaxation), involving twisting motion of the monosugar rings around the glycosidic bond. The activation energies and dielectric strengths for the beta-relaxation determined herein provide us valuable information about the flexibility of the glycosidic bond and the mobility of this particular linkage in the disaccharides studied. In turn, this information is essential for the control of the diffusivity of drugs or water entrapped in the sugar matrix.  相似文献   

9.
Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.  相似文献   

10.
We have analyzed a set of molecular dynamics (MD) trajectories of maltose in vacuum and water for solute imposed structuring on the solvent. To do this, we used a novel technique to calculate water probability densities to locate the areas in which the solvent is most populated in the maltose solution. We found that only the layer of water within the first maltose hydration shell has a probability density 50% and greater than that of bulk water. On investigating this water layer using Voronoi polyhedra (VP) analysis it was seen that only the waters adjacent to the hydrophobic (CH and CH2) groups are more structured than bulk water. We found that in a maltose solution of approximately 1.0 g/cm3 the solute does not disrupt the structure of the surrounding water beyond the first hydration shell. Next we performed a 700‐ps MD simulation of a maltohexaose strand in a box of 4096 SPC/E waters. The water probability density calculations and the VP analysis of the maltohexaose solution show that the larger amylose repeat unit decreases the solvent configurational entropy of the water beyond the first hydration shell. Analysis of this trajectory reveals that the helical conformation of the maltohexaose strand is preserved via bridging intermolecular water hydrogen bonds, indicating that a single amylose helical turn in water is preserved by hydrophilic and not hydrophobic interactions. Using VP analysis we present a method to accurately determine the number of water molecules in the first hydration shell of dissolved solutes. In the case of maltose, there are 40 water molecules in this shell, while for maltohexaose the number is 98. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 445–456, 2001  相似文献   

11.
In this article we report the detection and characterization of adsorbed interfacial water within the cages of the metal-organic framework MOF-5 (Zn(4)O(BDC)(3)) by terahertz time-domain spectroscopy (THz TDS) in the frequency range from 5 to 46 cm(-1). The experimental spectra suggest a coupling of the intermolecular motions of the water molecules adsorbed to the collective vibrations of the network at 4 wt% hydration. This finding is supported by the results of MD simulations. When increasing the water content to 8 wt% we observed a non reversible decomposition of MOF-5.  相似文献   

12.
The influence of three well-known disaccharides, namely, trehalose, maltose, and sucrose, on some structural and dynamical properties of lysozyme has been investigated by means of molecular dynamics computer simulations in the 37-60 wt % concentration range. The effects of sugars on the protein conformation are found to be relatively weak, in agreement with the preferential hydration of lysozyme. Conversely, sugars seem to increase significantly the relaxation times of the protein. These effects are shown to be correlated to the fractional solvent accessibilities of lysozyme residues and further support the slaving of protein dynamics. Moreover, a significant increase in the relaxation times of lysozyme, sugars, and water molecules is observed within the studied concentration range and may result from the percolation of the hydrogen-bond network of sugar molecules. This percolation appears to be of primary importance to explain the influence of sugars on the dynamical properties of lysozyme and water.  相似文献   

13.
Xyloglucan in water solution turns into a gel with addition of alcohol such as methanol and ethanol. In regard to this phenomenon, we investigated the adhesive property of alcohol to xyloglucan and proposed the mechanism of the gelation by molecular dynamics (MD) simulation of a xyloglucan in water, water/methanol, and water/ethanol solution for 10 ns. The alcohol molecules showed its adhesive property to the xyloglucan and made the swelling-shrinking motion of the xyloglucan slow. Alcohol molecules solvated to the xyloglucan mainly in hydrophobic way so as to fill the void of water hydration shell, resulting in reformation of the hydrogen-bond network of water molecules around the solute. We also found that alcohol molecules have strong tendency to hydrogen-bond on xylose O3 in xyloglucan. According to these results, we proposed the gelation mechanism of xyloglucan in water/alcohol solution.  相似文献   

14.
Terahertz (THz) spectroscopic investigations of condensed‐phase biological samples are reviewed ranging from the simple crystalline forms of amino acids, carbohydrates and polypeptides to the more complex aqueous forms of small proteins, DNA and RNA. Vibrationally resolved studies of crystalline samples have revealed the exquisite sensitivity of THz modes to crystalline order, temperature, conformational form, peptide sequence and local solvate environment and have given unprecedented measures of the binding force constants and anharmonic character of the force fields, properties necessary to improve predictability but not readily obtainable using any other method. These studies have provided benchmark vibrational data on extended periodic structures for direct comparisons with classical (CHARMm) and quantum chemical (density functional theory) theories. For the larger amorphous and/or aqueous phase samples, the THz modes form a continuum‐like absorption that arises because of the full accessibility to conformational space and/or the rapid time scale for inter‐conversion in these environments. Despite severe absorption by liquid water, detailed investigations have uncovered the photo‐ and hydration‐induced conformational flexibility of proteins, the solvent shell depth of the water/biomolecule boundary layers and the solvent reorientation dynamics occurring in these interfacial layers that occur on sub‐picosecond time scales. As such, THz spectroscopy has enhanced and extended the accessibility to intermolecular forces, length‐ and timescales important in biological structure and activity.  相似文献   

15.
16.
A broad spectrum of physiological processes is mediated by highly specific noncovalent interactions of carbohydrates and proteins. In a recent communication we identified several cyclic hexapeptides in a dynamic combinatorial library that interact selectively with carbohydrates with high binding constants in water. Herein, we report a detailed investigation of the noncovalent interaction of two cyclic hexapeptides (Cys‐His‐Cys (which we call HisHis) and Cys‐Tyr‐Cys (which we call TyrTyr)) with a selection of monosaccharides and disaccharides in aqueous solution. The parallel and antiparallel isomers of HisHis or TyrTyr were synthesized separately, and their interaction with monosaccharides and disaccharides in aqueous solution was studied by isothermal titration calorimetry, NMR spectroscopic titrations, and circular dichroism spectroscopy. From these measurements, we identified particularly stable complexes (Ka>1000 M ?1) of the parallel isomer of HisHis with N‐acetylneuraminic acid and with methyl‐α‐D ‐galactopyranoside as well as of both isomers of TyrTyr with trehalose. To gain further insight into the structure of the peptide–carbohydrate complexes, structure prediction was performed using quantum chemical methods. The calculations confirm the selectivity observed in the experiments and indicate the formation of multiple intermolecular hydrogen bonds in the most stable complexes.  相似文献   

17.
The structural properties resulting from the reciprocal influence between water and three well-known homologous disaccharides, namely, trehalose, maltose, and sucrose, in aqueous solutions have been investigated in the 4-66 wt % concentration range by means of molecular dynamics computer simulations. Hydration numbers clearly show that trehalose binds to a larger number of water molecules than do maltose or sucrose, thus affecting the water structure to a deeper extent. Two-dimensional radial distribution functions of trehalose solutions definitely reveal that water is preferentially localized at the hydration sites found in the trehalose dihydrate crystal, this tendency being enhanced when increasing trehalose concentration. Over a rather wide concentration range (4-49 wt %), the fluctuations of the radius of gyration and of the glycosidic dihedral angles of trehalose indicate a higher flexibility with respect to maltose and sucrose. At sugar concentrations between 33 and 66 wt %, the mean sugar cluster size and the number of sugar-sugar hydrogen bonds formed within sugar clusters reveal that trehalose is able to form larger clusters than sucrose but smaller than maltose. These features suggest that trehalose-water mixtures would be more homogeneous than the two others, thus reducing both desiccation stresses and ice formation.  相似文献   

18.
We report results from a molecular simulation study of the structure and dynamics of water near single carbohydrate molecules (glucose, trehalose, and sucrose) at 0 and 30 degrees C. The presence of a carbohydrate molecule has a number of significant effects on the microscopic water structure and dynamics. All three carbohydrates disrupt the tetrahedral arrangement of proximal water molecules and restrict their translational and rotational mobility. These destructuring effects and slow dynamics are the result of steric constraints imposed by the carbohydrate molecule and of the ability of a carbohydrate to form stable H bonds with water, respectively. The carbohydrates induce a pronounced decoupling between translational and rotational motions of proximal water molecules.  相似文献   

19.
The narrow terahertz (THz) features in crystalline biotin and lactose monohydrate observed in recent experimental studies are considered by solid-state density functional theory (DFT) calculations. The lowest-frequency THz features in both solid-state biotin and lactose monohydrate are assigned to external hindered rotational modes and not to the lowest-frequency internal modes predicted from isolated-molecule calculations. The motions of the molecules associated with these narrow THz features and the interactions between molecules in the hydrogen-bonded networks of these molecular crystals are discussed, and comparisons are made to similar studies on molecular crystals not exhibiting strong intermolecular interactions.  相似文献   

20.
We investigated by means of molecular dynamics simulations the properties (structure, thermodynamics, ion transport, and dynamics) of the protic ionic liquid N,N-diethyl-N-methylammonium triflate (dema:Tfl) and of selected aqueous mixtures of dema:Tfl. This ionic liquid, a good candidate for a water-free proton exchange membrane, is shown to exhibit high ion mobility and conductivity. The radial distribution functions reveal a significant long-range structural correlation. The ammonium cations [dema](+) are found to diffuse slightly faster than the triflate anions [Tfl](-), and both types of ions exhibit enhanced mobility at higher temperatures, leading to higher ionic conductivity. Analysis of the dynamics of ion pairing clearly points to the existence of long-lived contact ion pairs. We also examined the effects of water through characterization of properties of dema:Tfl-water mixtures. Water molecules replace counterions in the coordination shell of both ions, thus weakening their association. As water concentration increases, water molecules start to connect with each other and then form a large network that percolates through the system. Water influences ion dynamics in the mixtures. As the concentration of water increases, both translational and rotational motions of [dema](+) and [Tfl](-) are significantly enhanced. As a result, higher vehicular ionic conductivity is observed with increased hydration level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号