首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The study of the influence of free radicals in the biological process depends primarily on the capacity to detect these reactive species. In this work we have studied the application of mass spectrometry to the identification of hydroxyl radical species. The detection and identification by collisional activation mass-analyzed ion kinetic energy spectrometry (CA-MIKES) of a spin adduct of DMPO with the hydroxyl radical [(DMPO + O) + H]+ (m/z 130) has demonstrated that mass spectrometry can be a powerful tool in the detection and identification of spin adducts of DMPO with hydroxyl radical species. We were also able to detect the capture of secondary free radicals using ethanol by detecting and identifying the corresponding adduct [(DMPO + ethanol) + H]+. Other spin adducts have also been detected and identified. We consider that the use of mass spectrometry is a relevant technique for the detection of free hydroxyl radicals, especially in complex mixtures, since mass spectrometry is able to discriminate these adducts in such situations. Moreover, using this approach, it was possible to identify new spin adducts.  相似文献   

2.
Spin trapping by 5,5-dimethylpyrroline-N-oxide (DMPO) was used for the detection of radicals in Fenton media in the presence and absence of Nafion perfluorinated ionomers. For ethanol as solvent, the same types of spin adducts were detected in the presence or absence of Nafion. Solvent-derived adducts, DMPO/*OC2H5 and DMPO/*CH(OH)CH3, were identified, and their presence was rationalized by Fe(III)-catalyzed nucleophilic addition of ethanol to the spin trap and hydrogen abstraction by *OH radicals; oxygen radical adducts, DMPO/*O2(-) and DMPO/*OOH, were also detected. In Fenton media with methanol as solvent (and no Nafion), the DMPO/*O2(-) adduct dominated immediately after sample preparation, and a mixture consisting of DMPO/*OCH3, DMPO/*CH3, DMPO/*O2(-), and DMPO/*OOH adducts was detected after 30 min. In the presence of Nafion, only the adduct DMPO/*OH was detected. For water as solvent, only the DMPO/*OH adduct was detected, in both the absence and the presence of Nafion. The full hyperfine tensor components of this adduct were determined in Fenton media in the presence of Nafion with water and methanol as solvents. In Nafion/water exposed to the Fenton reagent at 358 K for 3 h, a DMPO adduct of a carbon-centered radical was also identified and assigned to a Nafion-derived fragment; its exact nature is under investigation. Variations of the 14N and Hbeta hyperfine splittings of a given adduct with the local polarity were key to the identification of some DMPO adducts, in particular DMPO/*O2(-). Both *OOH and O2*- adducts, with different 14N and Hbeta splittings, were detected simultaneously in some samples, for the first time in the spin trapping literature. Comparison with the results of a direct electron spin resonance study of Nafion exposed to the Fenton reagent indicated that spin trapping by DMPO can provide complementary information on the type of radicals present during Nafion degradation. The spin trapping approach described in this paper is limited, however, to systems that do not contain organic solvents.  相似文献   

3.
Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t-butyl hydroperoxide and a(N) = 14.60 G and a(H)(beta) = 15.61 G in the reaction mixture containing cumene hydroperoxide), previously assigned as DMPO adducts of t-butyloxyl and cumyloxyl radical, were indeed from trapping t-butyloxyl and cumyloxyl radicals, respectively.  相似文献   

4.
Abstract— N-Hydroxypyridine-2-thione, 2-S-PyrNOH, a potent antimicrobial, antifungal and anticancer agent, is photochemically active and upon UV irradiation generates free radicals. We have employed EPR and the spin-trap 5,5-dimethyl-l-pyrroline TV-oxide (DMPO) to investigate the photochemistry in aqueous solutions of 2-S-PyrNOH (used here in the form of a sodium salt, 2-S-PyrNONa). We found that upon photoactivation 2-S-PyrNONa can follow two different pathways: it can produce hydroxyl radicals and/or it can act as a photoreducing agent. The capacity of 2-S-PyrNONa to produce “OH” radicals has been demonstrated by: (1) EPR detection of the DMPO/OH adduct in UV-irradiated samples; (2) inhibition of the DMPO/OH formation by OH scavengers such as methyl alcohol, formate and DMSO and (3) by detection of EPR signals of DMPO adducts with radicals derived from reaction of OH with these inhibitors. The photoreductive capacity of 2-S-PyrNONa was deduced from the observation that the amplitude of the EPR signal of the spin adduct DMPO/OH decreased on UV irradiation in air-free pH 7.0 buffers and that the signal recovered in the dark and after aeration. The ability to generate free radicals upon UV irradiation suggests that 2-S-PyrNONa can be regarded as a potential photocytotoxic agent. This feature may be relevant to the biological action of this compound. Our findings also emphasize that caution should be used when 2-S-PyrNOH is employed as a source of OH radicals in biological or chemical systems.  相似文献   

5.
Abstract— Irradiation of daunomycin (or adriamycin) and the spin trap 5,5-dimethyl-l-pyrroline-1-oxide (DMPO) at 490 nm in the presence or in the absence of air generated the hydroxyl radical adduct (DMPO-OH). The observed DMPO-OH signal was not affected by the addition of hydroxyl radical scavengers (ethanol, formate), suggesting that direct trapping of the hydroxyl radical was not involved. The DMPO-OH signal was insensitive to superoxide dismutase and catalase, which ruled out the possibility of superoxide or H2O2 involvement. These findings demonstrate that daunomycin (or adriamycin) does not generate hydroxyl radicals or superoxide radical anions when subjected to 490-nm excitation. However, when daunomycin (or adriamycin) was irradiated at 310 nm DMPO adducts derived from two carbon-centered radicals, superoxide and the hydroxyl radical were detected. The superoxide adduct of DMPO was abolished by the addition of SOD, providing unequivocal evidence for the generation of the superoxide anion radical. The daunomycin semiquinone radical, observed upon 310-nm irradiation of daunomycin in the absence of DMPO, appears to be the precursor of the superoxide radical anion. One of the carbon-centered radicals trapped by DMPO exhibited a unique set of hyperfine parameters and was identified as an acyl radical. This suggests that the known photochemical deacylation of daunomycin occurs via a homolytic cleavage mechanism. The free radicals generated photolytically from adriamycin and daunomycin may be involved in the etiology of the skin ulceration and inflammation caused by these drugs. A knowledge of the dependence of these photogenerated radicals on the wavelength of excitation may be important in the development of adriamycin and daunomycin for photodynamic therapy.  相似文献   

6.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

7.
As an alternative method, matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry (MALDI-FTMS) has been successfully used to detect and identify free radical adducts with small molecular weights of hydroxyl and 2-cyano-2-propyl radicals trapped with 5,5-dimethylpyrroline N-oxide (DMPO). The detection and identification by MS/MS experiments using sustained offresonance irradiation collision-induced dissociation (SORI-CID) of [(DMPO+·OH-·H)+H^+] (m/z 130.0868) and [DMPO+2 ·CH(CH3)2CN+H^+] (m/z 250.1917) have demonstrated that MALDI-FTMS could be an effective method for detection and identification of free radical adducts. Other radical adducts have been also detected and identified. The approach of MALDI-FTMS is simple, fast, and sensitive which has potential for high-throughput analysis.  相似文献   

8.
The formation of linoleic acid radical species under the oxidative conditions of the Fenton reaction (using hydrogen peroxide and Fe (II)) was monitored by FAB-MS and ES-MS using the spin trap 5,5-dimethyl-1-pyrrolidine-N-oxide, DMPO. Both the FAB and ES mass spectra were very similar and showed the presence of ions corresponding to carbon- and oxygen centered spin adducts (DMPO/L*, DMPO/LO*, and DMPO/LOO*). Cyclic structures, formed between the DMPO oxygen and the neighboring carbon of the fatty acid, were also observed. Electrospray tandem mass spectrometry of these ions was performed to confirm the proposed structure of these adducts. All MS/MS spectra showed an ion at m/z 114, correspondent to the [DMPO + H]+, and a fragment ion due to loss of DMPO (loss of 113 Da), confirming that they are DMPO adducts. ES-MS/MS spectra of alkoxyl radical adducts (DMPO/LO*) showed an additional ion at m/z 130 [DMPO - O + H]+, while ES MS/MS of peroxyl radical adducts (DMPO/LOO*) showed a fragment ion at m/z 146 [DMPO - OO + H]+, confirming both structures. Other fragment ions were observed, such as alkyl acylium radical ions, formed by cleavage of the alkyl chain after loss of water and the DMPO molecule. The identification of fragment ions observed in the MS/MS spectra of the different DMPO adducts suggests the occurrence of structural isomers containing the DMPO moiety both at C9 and C13. The use of ES tandem mass spectrometry, associated with spin trapping experiments, has been shown to be a valuable tool for the structural characterization of carbon and oxygen-centered spin adducts of lipid radicals.  相似文献   

9.
Reactions of hydroxyl radicals (*OH) with selenocystine (SeCys) and two of its analogues, diselenodipropionic acid (SeP) and selenocystamine (SeA), have been studied in aqueous solutions at pHs of 1, 7, and 10 using the pulse radiolysis technique coupled with absorption detection. All of these diselenides react with *OH radicals with rate constants of approximately 10(10) M(-1) s(-1), producing diselenide radical cations ( approximately 1-5 micros after the pulse), with an absorption maximum at 560 nm, by elimination of H(2)O or OH(-) from hydroxyl radical adducts. Assignment of the 560 nm band to the diselenide radical cation was made by comparing the transient spectra with those produced upon reaction of diselenides with specific one-electron oxidants, Cl(2)(*-) (pH 1) and Br(2)(*-) radicals (pHs of 7 and 10). SeP having a carboxylic acid functionality showed quantitative conversion of hydroxyl radical adducts to radical cations. The compounds SeCys and SeA, having an amino functional group, in addition to the radical cations, produced a new transient with lambda(max) at 460 nm, at later time scales ( approximately 20-40 micros after the pulse). The rate and yield of formation of the 460 nm band increased with increasing concentrations of either SeCys or SeA. In analogy with similar studies reported for analogous disulfides, the 460 nm transient absorption band has been assigned to a triselenide radical adduct. The one-electron reduction potentials of the compounds were estimated to be 0.96, 1.3, and 1.6 V versus NHE, respectively, for SeP, SeCys, and SeA at pH 7. From these studies, it has been concluded that the electron-donating carboxylic acid group decreases the reduction potential and facilitates quantitative conversion of hydroxyl radical adducts to radical cations, while the electron-withdrawing NH(3)(+) group not only increases the reduction potential but also leads to fragmentation of the hydroxyl radical adduct to selenyl radicals, which are converted to triselenide radical adducts.  相似文献   

10.
Free radicals were trapped and observed by ESR when photoallergens bithionol and fentichlor were irradiated in the presence of spin traps N- t -butyl-α-phenylnitrone (PBN) and 5,5-dimethyl-pyrroline-N-oxide (DMPO). In the absence of air, both PBN and DMPO trapped a carbon-centered radical. The carbon-centered radical, which was capable of abstracting a hydrogen atom from cysteine, glutathione, ethanol and formate, was identified as an aryl radical derived from the homolytic cleavage of the carbon-chlorine bond. In the presence of air, both carbon-centered radicals and hydroxyl radicals were trapped by DMPO. Under similar conditions, the yield of the hydroxyl radicals was greater from bithionol than from fentichlor. The presence of the hydroxyl radical was confirmed by kinetic experiments employing hydroxyl radical scavengers (ethanol, formate). Superoxide and H2O2 were not involved. Experiments with oxygen-17O indicated that the hydroxyl radicals came exclusively from dissolved oxygen. The precursor of the hydroxyl radical is postulated to be a peroxy intermediate (ArOO*) derived from the reaction of an aryl radical (Ar*) with molecular oxygen. Both bithionol and fentichlor photoionized only when excited in the UVC (<270 nm) region. Free radicals have long been postulated in the photodechlorination of bithionol and fentichlor and the present study provides supporting evidence for such a mechanism. Aryl and hydroxyl radicals are reactive chemical species which may trigger a series of events that culminate in photoallergy.  相似文献   

11.
This work characterizes the internal energy distribution of the CD(2)CD(2)OH radical formed via photodissociation of 2-bromoethanol-d(4). The CD(2)CD(2)OH radical is the first radical adduct in the addition of the hydroxyl radical to C(2)D(4) and the product branching of the OH + C(2)D(4) reaction is dependent on the total internal energy of this adduct and how that energy is partitioned between rotation and vibration. Using a combination of a velocity map imaging apparatus and a crossed laser-molecular beam scattering apparatus, we photodissociate the BrCD(2)CD(2)OH precursor at 193 nm and measure the velocity distributions of the Br atoms, resolving the Br((2)P(1/2)) and Br((2)P(3/2)) states with [2 + 1] resonance enhanced multiphoton ionization (REMPI) on the imaging apparatus. We also detect the velocity distribution of the subset of the nascent momentum-matched CD(2)CD(2)OH cofragments that are formed stable to subsequent dissociation. Invoking conservation of momentum and conservation of energy and a recently developed impulsive model, we determine the vibrational energy distribution of the nascent CD(2)CD(2)OH radicals from the measured velocity distributions.  相似文献   

12.
Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid (3,5-PDCA) and nicotinic acid (NA) were studied at appropriate pHs in aqueous solutions by pulse radiolysis technique. At pH 1, CH(3)C*HOH and *CH(2)OH radicals were found to react with 3,5-PDCA by rate constants of 2.2 x 10(9) and 5.1 x 10(8) dm(3) mol(-1) s(-1), respectively, giving radical adduct species. The adduct species formed in the reaction of CH(3)C*HOH radicals with 3,5-PDCA underwent unimolecular decay (k = 9.8 x 10(4) s(-1)) giving pyridinyl radicals. Reaction of (CH(3))(2)C*OH, CH(3)C*HOH, and *CH(2)OH radicals with NA at pH 3.3 gave the adduct species which subsequently decayed to the pyridinyl radicals. At pH 1, wherein NA is present in the protonated form, (CH(3))(2)C*OH radicals directly transfer electrons to NA, whereas CH(3)C*HOH and *CH(2)OH radicals react with higher rate constants compared with those at pH 3.3, initially giving the adduct species which subsequently undergo elimination reaction giving pyridinyl radicals. Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid are found to proceed by an addition-elimination pathway that provides one of the few examples of organic inner sphere electron-transfer reactions. Rate constant for the addition reaction as well as rate of elimination varies with the reduction potential of alpha-hydroxyalkyl radicals.  相似文献   

13.
The reaction chemistry between dimethyl ether (DME) cations and polycyclic aromatic hydrocarbons (PAHs) was elucidated by isolating three different types of DME ions using a quadrupole ion trap and reacting them individually with neutral PAH molecules eluting from a gas chromatographic column. The results obtained show that the CH(2)OCH(3)(+) ion (m/z 45) reacts via adduct formation followed by elimination of CH(3)OH, the (CH(3))(2)OH(+) (m/z 47) ion serves as proton donor and the (CH(3))(3)O(+) ion (m/z 61) does not yield any reaction products. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

14.
The hydroxyl radical (*OH) is an important mediator of biological oxidative stress, and this has stimulated interest in its detection. 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and its alkoxycarbonyl and alkoxyphosphoryl analogues have been employed as spin traps for electron paramagnetic resonance (EPR) spectroscopic radical detection. Energies of optimized geometries of nitrones and their corresponding *OH adducts were calculated using density functional theory (DFT) at the B3LYP/6-31+G//B3LYP/6-31G level. Calculations predict that the trans adduct formation is favored in alkoxycarbonyl nitrones, while cis adducts with intramolecular H-bonding is favored for alkoxyphosphoryl nitrones. Addition of *OH to a phosphoryl-substituted nitrone is more exoergic than the carbonylated nitrones. Charge and spin densities on the nitrone spin traps were correlated with their rates of addition with *OH, and results show that the charge density on the nitronyl C, the site of *OH addition, is more positive in phosphorylated nitrones compared to DMPO and the alkoxycarbonyl nitrones. The dihedral angle between the beta-H and nitroxyl O bonds is smaller in phosphorylated nitrones, and that aspect appears to account for the longer half-lives of the spin adducts compared to those in DMPO and alkoxycarbonyl nitrones. Structures of nitrones with trifluoromethyl-, trifluoromethylcarbonyl-, methylsulfonyl-, trifluoromethylsulfonyl-, amido-, spiropentyl-, and spiroester substituents were optimized and their energies compared. Amido and spiroester nitrones were predicted to be the most suitable nitrones for spin trapping of *OH due to the similarity of their thermodynamic and electronic properties to those of alkoxyphosphoryl nitrones. Moreover, dimethoxyphosphoryl substitution at C-5 was found to be the most efficient substitution site for spin trapping of *OH, and their spin adducts are predicted to be the most stable of all of the isomeric forms.  相似文献   

15.
The photochemistry of 5,5-dimethyl-l-pyrroline N -oxide (DMPO) has been studied in benzene, cyclohexane and aqueous buffer solutions (pH 7.4) by means of electron paramagnetic resonance (EPR) and the spin trapping technique. Ultraviolet irradiation of DMPO in aqueous buffer with unfiltered UV radiation from a Xe arc lamp results in photoionization of the spin trap and the generation of the DMPO cation radical, DMPO+. The aqueous electron, eaq, was trapped by DMPO and detected as the DMPO/H adduct. The DMPO+- reacted with the water to yield the DMPO/OH adduct. Ultraviolet irradiation of DMPO in nitrogen-saturated benzene gave an unidentified carbon-centered DMPO adduct that was replaced by hydroperoxyl and alkoxyl adducts of DMPO when oxygen was present. Experiments employing 17O2 gas indicated that the oxygen in the DMPO alkoxyl adduct was derived from molecular oxygen. However, UV irradiation of DMPO in cyclohexane yielded the cyclohexyl and cyclohexyloxyl adducts of DMPO in nitrogen-saturated and air-saturated solutions, respectively. These observations suggest that in aprotic solvents UV irradiation of DMPO generates a carbon-centered radical (R), derived from the trap itself, which in benzene reacts with oxygen to yield an alkoxyl radical (RO), possibly via a peroxyl radical (ROO) intermediate. In cyclohexane R abstracts a hydrogen atom from the solvent to yield the cyclohexyl radical in the absence of oxygen and the cyclohexyloxyl radical in the presence of oxygen. These findings indicate that when DMPO is used as a spin trap in studies employing short-wavelength UV radiation (λ < 300 nm) the photochemistry of DMPO cannot be ignored.  相似文献   

16.
Free radical species are generally short-lived due to their high reactivity and thus direct measurement and identification are often impossible. In this study we used a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), to trap radical intermediates formed during the oxidation of isomeric dipeptides tyrosine-leucine (Tyr-Leu) and leucine-tyrosine (Leu-Tyr), induced by the hydroxyl radical. To investigate the influence of the amino acid position in the peptide chain on the oxidation and free radical generation, the spin adducts were characterized using LC-MS and MS(n) . We detected carbon and oxygen DMPO adducts and adducts bearing two DMPO, which were analyzed by MS(n) . Both alkoxyl and peroxyl radicals were identified. Radical intermediates were localized in Tyr during oxidation of Tyr-Leu, while radicals were identified in Leu and Tyr during oxidation of Leu-Tyr. DMPO adducts of acyl radical species formed from cleavage of the peptide backbone, promoted by the alkoxyl radical in α carbon of the N-terminal amino acid were observed. The results show that the amino acid position has an influence in the oxidation process, at least on small peptides, and that the α carbon of the N-terminal amino acid is more vulnerable to the attack of the electrophilic hydroxyl radical.  相似文献   

17.
溶液中光诱导的电子转移反应已进行了大量的研究。而半导体粉末在水相或非水溶剂中的光化学研究也与自俱增[1-3]。这种光化学与成像体系、太阳能转换以及光催化或污物的光降解有关。因此,越来越引起人们的重视。  相似文献   

18.
Earlier studies have shown that on exposure to UVA, hydroperoxynaphthalene diimide (IA) generates hydroxyl radicals, induces DNA strand scission, and kills cells.Here we employed electron paramagnetic resonance (EPR) and spin trapping to investigate the free radical photochemistry of IA and that of related naphthalene diimides, which are devoid of the hydroperoxyl moiety (N,N'-bis[2-methyl]-1,4,5,8-naphthaldiimide [IB], N,N'-bis[2-thiomethyl-2-methoxyethyl]-1,4,5,8-naphthaldiimide [IC]) and therefore are unable to generate hydroxyl radicals. It is shown that on UV irradiation (>300 nm) in air-free methanol or ethanol solutions all these naphthalene diimides undergo one-electron reduction to corresponding anion radicals, positively identified by EPR. With EPR and a spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), we found that the photogeneration of the naphthalene diimide radicals is concomitant with the formation of radicals from the solvents, presumably through electron/hydrogen atom abstraction by photoactivated diimides. Irradiation of IA, IB or IC in the presence of oxygen generates superoxide, which was detected as a DMPO adduct. The high photoreactivity of IB and IC supports the notion that hydroperoxide IA can induce oxidative damage via photoprocesses that are independent of *OH generation. These observations could be pertinent to the application of naphthalene diimides as selective photonucleases, PDT anticancer agents or both.  相似文献   

19.
A rapid method combining liquid chromatography with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was developed for the determination of the hydroxyl radical (.OH). .OH generated via Fenton reaction was spin-trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and then analyzed by LC/ESI-MS/MS in multiple reaction monitoring (MRM) mode, using N-methyl-2-pyrrolidone (NMP) as the internal standard. The peak area ratio of DMPO-OH to NMP positively correlated with the concentration of .OH. The relative standard deviation (RSD) of the method was 1.13% (n = 8). The present method was successfully applied to evaluate the .OH scavenging capacity of several phenolic acids.  相似文献   

20.
The products obtained after the reaction between flavonols and the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) in both methanol and acetonitrile were characterized using liquid chromatography coupled with negative electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) and NMR spectroscopy. The flavonols studied were quercetin, kaempferol and myricetin. In methanol, two reaction products of oxidized quercetin were identified using LC/ESI-MS/MS and NMR. Quercetin was oxidized through a transfer of two H-atoms to DPPH(*) and subsequently incorporated either two CH(3)OH molecules or one CH(3)OH- and one H(2)O molecule giving the products 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dimethoxy-2,3-dihydrochromen-4-one and 2-(3,4-dihydroxyphenyl)-3,3,5,7-tetrahydroxy-2-methoxy-2,3-dihydrochromen-4-one, respectively. LC/ESI-MS/MS analysis revealed that in methanol, kaempferol and myricetin also gave rise to methoxylated oxidation products similar to that identified for quercetin. Kaempferol, in addition, also exhibited products where a kaempferol radical, obtained by a transfer of one H-atom to DPPH(*), reacted with CH(3)OH through the addition of CH(3)O(*), yielding two isomeric products. When the reaction took place in acetonitrile, LC/ESI-MS/MS analysis showed that both quercetin and myricetin formed stable isomeric quinone products obtained by a transfer of two H-atoms to DPPH(*). In contrast, kaempferol formed two isomeric products where a kaempferol radical reacted with H(2)O through the addition of OH(*), i.e. similar to the reaction of kaempferol radicals with CH(3)OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号