首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本工作采用CVD法在阳极氧化TiO2纳米管阵列膜表面沉积一层非晶Si膜,通过退火后得到晶化了的Si膜/TiO2纳米管阵列的复合结构,并初步就其光催化还原CO2制备碳氢化合物的活性进行研究。拉曼光谱(Raman)、X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、高分辨透射电子显微镜(TEM)等微结构表征结果表明所制备的TiO2纳米管阵列的厚度为270 nm左右,管直径约为70 nm,管壁厚度约为16 nm。覆盖的Si膜已晶化,其厚度约为300 nm。通过高效液相色谱(HPLC)及总有机碳(TOC)来检测光催化还原液相产物中的甲酸及总有机碳含量,发现负载Si膜后的TiO2纳米管阵列光催化性能有所提高,在装有400cut滤光片氙灯照射2 h下TOC含量从21.2 mg.L-1增长到29.5 mg.L-1,表明Si与TiO2的复合可有效的提高光催化还原CO2的活性,这可能与该异质结结构可增加对光的吸收并且可降低光生空穴-电子对复合有关。光催化循环实验表明所制得的催化剂在循环5次后仍可保持91.6%的催化活性。  相似文献   

2.
We have studied pulsed laser-induced oxygen deficiencies at rutile TiO2 surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO2−δ layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm2 for 2000 pulses. The TiO2−δ layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO2−δ layer exhibited unconventional metallic behavior with hysteresis. A metal–insulator transition occurred at 42 K, and the electrical resistivity exceeded 104 Ω cm below 42 K. This metal–insulator transition could be caused by bipolaronic ordering derived from Ti–Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti4O7. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation.  相似文献   

3.
This paper described a new method for the preparation of Zr doped TiO2 nanotube arrays by electrochemical method. TiO2 nanotube arrays were prepared by anodization with titanium anode and platinum cathode. Afterwards, the formed TiO2 nanotube arrays and Pt were used as cathode and anode, respectively, for preparation of Zr/TiO2 nanotube arrays in the electrolyte of 0.1 M Zr(NO3)4 with different voltage and post-calcination process. The nanotube arrays were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and UV-Vis diffusion reflection spectra (DRS). The photocatalytic activities of these nanotubes were investigated with Rhodamine B as the model pollutant and the results demonstrated that the photocatalytic efficiency of Zr doped TiO2 nanotubes was much better than that of TiO2 nanotubes under UV irradiation. Zr/TiO2 nanotube arrays doped at 7 V and calcined at 600 °C (denoted as TiO2-7 V-600) achieved the best photocatalytic efficiency and the most optimal doping ratio was 0.047 (Zr/Ti). TiO2-7 V-600 could be reused for more than 20 times and maintained good photocatalytic activities.  相似文献   

4.
In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 °C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of –1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm-2) compared to the undoped TiO2 nanotube arrays (0.19 mA cm-2). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.  相似文献   

5.
Self-organized nanotube arrays of TiO2 have been grown from titanium (Ti) thin films deposited on p-type Si(1 0 0) substrates. Structural and morphological characterizations carried out by X-ray diffraction and scanning electron microcopy indicate that the sputtered crystalline Ti thin films used for subsequent anodization are hexagonally closed packed (hcp-Ti) and show a columnar morphology. Electrochemical anodization of the Ti films was carried out by potentiostatic experiments in 1 M H3PO4 + 1 M NaOH + 0.5 wt% HF electrolyte at room temperature. The TiO2 nanotubes on a semiconductor substrate have an average tube length of approximately 560 nm, diameter in the order of 80 nm and wall thickness approximately 20 nm.  相似文献   

6.
本论文采用阳极氧化法在金属钛基底上制备高度有序的TiO2纳米管阵列薄膜,然后采用脉冲电流法在TiO2纳米管阵列上沉积Cu2O,从而制备出Cu2O-TiO2纳米管阵列异质结复合薄膜。借助X射线衍射仪(XRD),场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等表征手段,详细探讨了Cu2O沉积过程中电解液的不同扰动方式(静止、磁力搅拌和超声搅拌)对复合薄膜物相和形貌的影响。实验结果表明电解液的扰动方式会影响Cu2O沉积过程中的离子扩散和微区化学环境,从而影响Cu2O的形貌。通过漫反射紫外-可见吸收光谱(UV-Vis)和光电流性能测试可知所制备的负载Cu2O型TiO2纳米管阵列薄膜具有显著的可见光响应效应。  相似文献   

7.
在用阳极氧化法制备有序排列TiO2纳米管阵列薄膜的基础上,引入脉冲沉积工艺,成功实现了均匀、弥散分布的Cu2O纳米颗粒修饰改性TiO2纳米管阵列,形成Cu2O/TiO2 纳米管异质结复合材料. 利用场发射扫描电镜(FESEM)、场发射透射电镜(FETEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对样品进行表征,重点研究了Cu2O/TiO2 纳米管异质结的光电化学特性和对甲基橙(MO)的可见光催化降解性能. 结果表明,Cu2O纳米颗粒均匀附着在TiO2纳米管阵列的管口和中部位置,所制备的Cu2O/TiO2 纳米管异质结具有高效的可见光光催化性能;在浓度为0.01 mol·L-1的CuSO4溶液中制得的Cu2O/TiO2纳米管异质结表现出最好的电化学特性和光催化性能;另外,对Cu2O纳米颗粒影响光催化活性的机理进行了讨论.  相似文献   

8.
本文采用电化学阳极氧化法以含氟的甘油和水混合溶液为电解液在纯钛表面制备了一层排列规整的TiO2纳米管阵列,研究了电解液中额外添加3种2价阴离子、不同的电解时间及不同的添加物浓度等因素对所获得的TiO2纳米管阵列形貌的影响。结果表明,在改性电解液中制备的TiO2纳米管阵列的长度均超过了未改性的电解液中制备的,并随着氧化时间的增长,纳米管管口直径增大,管壁变薄;同时添加的(NH4)2TiF6浓度在0.025~0.1 mol.L-1范围内均可获得管长更长且形貌较好的TiO2纳米管阵列。  相似文献   

9.
A large clearance TiO2 nanotube arrays (LTAs) has been synthesized by a not more than 12 h anodization duration and based on this a branched TiO2 nanotube arrays (BLTs) has been achieved through TiO2 nanorods branch-like grown on the LTAs. Some key factors and probable mechanisms of the fabrication processes on two novel nanoarchitectures are discussed. Exhilaratingly, it is found that the obtained LTAs has demonstrated large pore diameter and void spaces (pore diameter ∼350 nm; void spaces ∼160 nm; and tube length ∼3.5 μm), and the synthesized hierarchical BLTs, compared with conventional TiO2 nanotube arrays, has shown a much stronger dye absorption performance and an approximately double of the solar cell efficiency (in our case from 1.62% to 3.18% under simulated AM 1.5 conditions).  相似文献   

10.
Fe_2O_3/TiO_2纳米管阵列的制备及其光催化性能   总被引:2,自引:0,他引:2  
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒。利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能。结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍。而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%。  相似文献   

11.
在钛基体上采用阳极氧化法制备了TiO2纳米管阵列,采用化学浴方法在TiO2纳米管阵列上修饰了Fe2O3纳米颗粒.利用扫描电镜、X射线衍射和紫外可见漫反射光谱等手段对材料进行了表征,同时测试了材料的光电化学性能及其光催化降解亚甲基蓝染料废水的性能.结果表明,Fe2O3纳米颗粒的修饰将TiO2纳米管阵列的光响应拓宽至可见光区域,提高了光电流,Fe2O3/TiO2纳米管阵列的光电流是未修饰的TiO2纳米管阵列的9倍.而在光催化反应中,亚甲基蓝最高降解率可达80%,比未修饰的TiO2纳米管阵列高出30%.  相似文献   

12.
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO2 nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO2 nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum and increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO2 nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO2 nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated.  相似文献   

13.
Na+ complex with the dibenzo-18-crown-6 ester was used as a template to synthesize mesoporous titanium dioxide with the specific surface area 130–140 m2/g, pore diameter 5–9 nm and anatase content 70–90%. The mesoporous TiO2 samples prepared were found to have photocatalytic activity in CuII, NiII and AgI reduction by aliphatic alcohols. The resulting metal–semiconductor nanostructures have remarkable photocatalytic activity in hydrogen evolution from water–alcohol mixtures, their efficiency being 50–60% greater than that of the metal-containing nano-composites based on TiO2 Degussa P25.The effects of the thermal treatment of mesoporous TiO2 upon its photocatalytic activity in hydrogen production were studied. The anatase content and pore size were found to be the basic parameters determining the photoreaction rate. The growth of the quantum yield of hydrogen evolution from TiO2/Ag0 to TiO2/Ni0 to TiO2/Cu0 was interpreted in terms of differences in the electronic interaction between metal nanoparticles and the semiconductor surface. It was found that there is an optimal metal concentration range where the quantum yield of hydrogen production is maximal. A decrease in the photoreaction rate at further increment in the metal content was supposed to be connected with the enlargement of metal nanoparticles and deterioration of the intimate electron interaction between the components of the metal–semiconductor nanocomposites.  相似文献   

14.
This work reports on an electrochemical system which allows the control of surface wettability properties by voltage induced changes in contact angle (Θ) of ΔΘ  50°. For this we used conductive TiO2 nanotubular layers that were modified with ferrocene coupled to the TiO2 surface via triethoxysilane. To enhance the hydrophobic character of the nanotubular TiO2 surface, also mixed organic monolayers namely perfluorotriethoxysilane, were explored. Formation of the ferrocene and mixed organic monolayer was confirmed by X-ray-photoelectron-spectroscopy (XPS). Contact angle combined with electrochemical measurements show that ferrocene in these monolayers can successfully be switched from Fe2+ to Fe3+ and that this change in the redox state considerably alters the wetting properties. Using a conductive nanotube substrate allows us to amplify this change by a factor of more than 10, and thus this surface can be used to trigger significant wetting alterations.  相似文献   

15.
Novel electrocatalysts Au/TiO2 nanotube arrays (Au/TiO2NTs) were prepared by loading low-content(1.9 at.%) of Au nanoparticles (AuNPs) onto highly ordered TiO2 nanotube arrays (TiO2NTs). Ethanol electrooxidation indicates that visible-light (λ > 400 nm) irradiation can significantly enhance the activity as well as resistpoisoning of Au/TiO2NTs electrocatalysts that are activated by plasmon resonance. Au/TiO2NTs catalysts calcinated at 300 °C display the highest performance due to the strong synergistic interactions between TiO2 and Au NPs. The combination of visible-light irradiation with a controllable potential offers a new strategyfor enhancing the performance of anodes in direct ethanol fuel cell (DEFC).  相似文献   

16.
Titania nanotube arrays were fabricated by anodic oxidation of titanium foil in different electrolytes. The morphology, crystallinity and composition of the as-prepared nanotube arrays were studied by XRD, SEM and EDX. Electrochemical impedance spectroscopy (EIS) was employed to investigate their electrical conductivity and capacitance. Titania nanotube arrays co-adsorbed with horseradish peroxidase (HRP) and thionine chloride (Th) were studied for their sensitivity to hydrogen peroxide by means of cyclic voltammetric and galvanostatic measurements. The experiments showed that TiO2 nanotube arrays possessed appreciably different sensitivities to H2O2 due to their different conductivity. Further experiments revealed that TiO2 nanotubes have noticeably different ability of adsorbing HRP and Th, and the best sensitivity was achieved when the density of HRP is the highest. The TiO2 nanotube arrays fabricated in potassium fluoride solution demonstrated the best sensitivity on hydrogen peroxide in the range of 10−5–3 × 10−3 M at pH 6.7 and at a potential of −600 mV (vs. Ag/AgCl).  相似文献   

17.
The preparation of nanoporous TiO2 electrodes modified with an MgTiO3 layer and its application in dye-sensitized solar cells (DSSCs) were reported. The conduction band of MgTiO3 stands higher than that of TiO2, so the MgTiO3 layer can be beneficial to the improvement of nanoporous TiO2 electrodes. The as-prepared TiO2/MgTiO3 electrodes were characterized by XRD and the diffraction of its crystal plane (1 0 4) was detected, demonstrating the existence of MgTiO3 phase on the surface of TiO2. Compared with bare TiO2 electrodes, MgTiO3 modified TiO2 electrodes presented more dye adsorption. Moreover an energy barrier formed as TiO2 electrodes were modified with MgTiO3 layer, which suppresses the charge recombination. As a result, the photoelectrochemical properties of the modified electrodes were improved and the overall energy conversion efficiency η was increased from 6.12% to 8.75% under the illumination of a white light of 100 mW/cm2.  相似文献   

18.
TiO2纳米管阵列光电催化氧化处理氨氮废水   总被引:1,自引:0,他引:1  
用电化学阳极氧化法制备了高度有序的钛基二氧化钛纳米管阵列薄膜。用场发射扫描电镜(FE-SEM)、X射线衍射(XRD)表征样品的形貌与晶型特征。以二氧化钛纳米管阵列为光阳极,石墨为对电极,测试了不同pH值和外加偏压条件下的光电流响应和光电催化氧化降解NH4Cl水溶液(以N计,100 mg·L-1)的效率。结果表明:所制备的TiO2纳米管阵列具有锐钛矿和金红石的混晶结构,且主要晶型为锐钛矿。光电流响应的强弱与光电催化氧化效率的高低相对应,降解氨氮废水的最佳条件为pH=11,偏压为1.0 V。  相似文献   

19.
This communication demonstrates the first work on anodic composite deposition of oxide nanocomposites. Rutile TiO2 nanoflowers with an average petal size of ca. 10 nm in diameter and 100 nm in length were synthesized from a TiCl3 solution purged with air at 25 °C for 12 days prior to the composite deposition. Hydrous ruthenium oxide (RuO2·xH2O) and TiO2 nanoflowers were composite-deposited onto Ti substrates for supercapacitors. In comparing with RuO2·xH2O deposits, RuO2·xH2O–TiO2 nanocomposites with a highly porous nature exhibit the weakly mass-dependent specific capacitance and high-power capacitive characteristics.  相似文献   

20.
Cystatin C (CysC) is a sensitive marker for the estimation of the glomerular filtration rate and the clinical diagnosis of different diseases. In this paper, CysC-specific nanobodies (Nbs) were isolated from a phage display nanobody library. A simple and sensitive photoelectrochemical immunosensor based on TiO2 nanotube arrays (TNAs) was proposed for the sensitive detection of CysC. The TiO2 nanotube arrays deposited by electrochemical anodization displayed a high and stable photocurrent response under irradiation. After coupling CysC-specific nanobody to TNA (Nb/TNA), the proposed immunosensor for CysC can be utilized for tracking the photocurrent change of Nb/TNA caused by immunoreactions between CysC and the immobilized CysC-specific Nb. This allowed for the determination of CysC with a calibration range from 0.72 pM to 7.19 nM. The variation of the photocurrent was in a linear relationship with the logarithm of the CysC concentration in the range of 0.72 pM–3.6 nM. The immunosensor had a correlation coefficient of 0.97 and a detection limit of 0.14 pM at a signal-to-noise ratio of 3. The proposed immunosensor showed satisfactory intra- and inter-assay accuracy, high selectivity and good stability. As a result, this proposed strategy would offer a novel and simple approach for the detection of immunoreactions, provide new insights in popularizing the diagnosis of CysC, and extend the application of TiO2 nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号