首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Natural fiber is well‐known reinforcement filler in polymer‐matrix composites. Composite components like organic polymers and natural fibers are natural fire conductors as the natural fiber consists of cellulose, hemicellulose, and lignin, and hence are as highly flammable as wood. Natural fiber reinforced composite materials are progressively being used in a variety of applications where their fire response is a hazardous consideration, for example, in the automotive (transportation) and building‐construction industries. As a result, an awareness of their performance or response during a fire and the use of conventional fire retardants are of great importance, as they are subject to thermal decomposition when exposed to intensive high heat or fire sources. In this review paper, fire flammability is the main concern for cellulosic and non‐cellulosic fiber‐reinforced polymer composites, especially epoxy composites. This paper reviews the literature on the recent developments in flammability studies concerning polymers, epoxy polymers, cellulosic‐fibers, and non‐cellulosic fiber‐reinforced epoxy bio‐composites. The prime objective of this review is to expand the reach of “fire retardants for polymer materials and composites” to the science community, including physicists, chemists, and engineers in order to broaden the range of their applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The synergy of the materials physical characteristics, performance and recyclability become vital for industrial sustainability. However, finding a suitable cellulosic fiber type to form potential cellulosic-based composite and investigating performance deteriorations are of paramount importance to expand sustainable design possibilities for various applications. In this work investigations of the mechanical performance deterioration of both Mediterranean cellulosic pine and cypress fibers are experimentally investigated. This was achieved by utilizing the fibers with polyethylene matrix to reveal their potential capabilities for industrial applications. Numerous composites with various parameters like fiber types, fiber loading, fiber size, and reinforcement conditions were designed to study several characteristics of the cellulosic composites, their mechanical performance deteriorations, as well as determining the optimal fiber loading condition for each particular studied mechanical property of the composites. Results demonstrate that mechanical properties are significantly changed with fiber loading. In addition, the failure mode in the high fiber loading composites is an obvious indication of the improper or ineffective load transfer between the matrix and the cellulosic fiber. Moreover, it is revealed here that the performance of cypress fibers with polyethylene matrix is much better than that of pine for the considered properties with reference to the neat polyethylene matrix. The overall performance of both types of fibers with polyethylene clearly demonstrates that the performance of cypress fibers is much better than that of pine for all considered properties.  相似文献   

3.
The present era uses natural fibers as a partial replacement for synthetic fibers, thereby utilizing eco-friendly materials in a number of automotive applications (namely, bumpers, wind shields, doors, ceilings, etc.). Although there are many research findings related to natural fiber composites, in this work, a new sandwich layer of Cyperus pangorei fibers and jute fiber epoxy hybrid composites is developed using the hand lay-up technique and compared with the pure Cyperus pangorei fiber and pure jute fiber epoxy composites. The mechanical properties like tensile, flexural, compressive, impact, and hardness are performed as per ASTM standards for the developed composites. The test results show that Cyperus pangorei hybrid composite 3 had a tensile strength of 50.2 MPa, flexural strength of 301.48 N mm?2, ultimate compression load of 15.03 KN, impact energy of 6.34 J, and Shore D hardness of 82.7, which are superior by 1.1–1.5 times to all the other developed composites. The microstructural characterizations are performed using scanning electron microscope which played a vital role in analyzing the failure morphology of the composites.  相似文献   

4.
Increasing environmental concerns and depletion of petroleum resources has forced researchers around the globe to find new green materials. In the present research work, a particular interest was focused on the effective use of lignocellulosic natural fibers as reinforcement using polymer resin as a novel matrix. Green composites were prepared using the compression molding technique with different fiber contents. The physicomechanical and thermal characteristics of the different composite samples were investigated as a function of fiber contents. The results obtained suggest that the properties of the polymer matrix are positively affected by the incorporation of natural cellulosic fibers.  相似文献   

5.
A theoretical model was introduced for the evaluation of the boundary layer developed between the main phases during the preparation of unidirectional fiber composites. It has been shown that this thin layer influences considerably the physical properties of the composite. It was assumed that the physical properties of themesophase unfold from those of the hard-core fibers to those of the softer matrix. Thus, a multicylinder model was assumed improving the classical two-cylinder model introduced by Hashin and Rosen for the representative volume element of the composite.Based on thermodynamic phenomena appearing at the glass transition temperatures of the composite and concerning the positions and the sizes of the heat-capacity jumps there, as well as on the experimental values of the longitudinal elastic modulus of the composite, the extent of the mesophase and the mechanical properties of the composite may be accurately evaluated.This version of the model is based on a previous one concerning a multilayer model, but it is considerably improved in order to take into consideration, in a realistic manner, the physical phenomena developed in fiber reinforced composites.  相似文献   

6.
High strength and low gas permeability cellulosic composites were produced using the papermaking technology with a commercial microfibrillated cellulose (MFC). The effect of blending MFC with hardwood fibers was compared to the direct refining of the fibers with and without polyamideamine-epichlorohydrin (PAE) addition. The addition of MFC, free or tethered, to pulp fibers combined with PAE can increase the dry strength and wet strength of cellulosic materials by an order of magnitude. Air permeability of the composites decreases by up to orders four of magnitude with MFC addition. The hypothesis that refining wood fibers can produce tethered MFC which provides equivalent strength properties but significant drainage benefits was proven. Furthermore, major benefits in paper formation uniformity (fiber distribution homogeneity) were achieved with refined fibers.  相似文献   

7.
Facile and smart method for the modification of inorganic fibers has been developed. The polyaniline was synthesized on basalt fiber surface presenting an organic polymer shell to the inorganic fibers. The modified basalt fibers were dispersed in rubber-producing well-dispersed rubber composites. Various mass loadings of modified basalt fibers were dispersed and optimized. The effect of radiation on the properties of developed rubber composites was investigated by exposure to different gamma radiation doses. The flammability, thermal and mechanical properties were studied. The flammability of developed composites was improved achieving 62 and 16% reduction in the peak heat release rate compared to blank rubber and unmodified basalt fiber-based rubber composite, respectively. This is in addition to significant reduction in emission of CO and CO2 gases by 65 and 58%, respectively. Also, the tensile strength property was enhanced by 38 and 53% compared to blank and unmodified basalt composite, respectively. The role of polyaniline layer on inorganic fiber surface and their effect on the properties of the produced composites was studied. The organic polymer shell achieved good compatibility and interfacial adhesion of basalt fibers with rubber matrix and radiation protection effect for the developed composites.  相似文献   

8.
This work reports the effect of an alkaline environment and ultraviolet (UV) radiation on the physical, thermal, and tensile properties of different fibers selected as potential reinforcing elements to enhance the impact properties of brittle glass/silicate composites. The fibers, which included regenerated cellulosic (viscose and rayon), synthetic (ultrahigh molecular weight polyethylene, polypropylene, polyamide, acrylic), glass, ceramic, and steel, were aged in different alkaline solutions with pH ranging from 11.1 to 13.6 at 70°C for different periods of time and exposed to UV radiation for 330 h. The physical and thermal properties of aged fibers were studied using tensile testing, scanning electron microscopy, and simultaneous differential and thermogravimetric analysis. Results showed that the regenerated cellulosic fibers, acrylic, E‐glass, and A‐glass fibers could not withstand the highly alkaline environment. Overall, ultrahigh molecular weight polyethylene, UV‐stable polypropylene, polyamide 6.6, AR‐glass, ceramic (alumino borosilicate), and steel fibers performed very well under all conditions, indicating that they have the potential to be used as reinforcing elements in glass/silicate composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Due to their flame retardant behavior, phosphorylated cellulosic fibers could be interesting candidates for use in the composite material field. However, because of the phosphate groups, the fiber network is highly charged and hydrophilic reducing its compatibility towards synthetic resins. An effective hydrophobization method for phosphorylated cellulosic fibers was therefore developed in order to enhance their hydrophobic behavior. The best results were obtained with a straightforward addition of tosylated fatty alcohols. The influence of the carbon chain length on the reaction efficiency, the thermal degradation and the hydrophobic behavior are reported. The success of the alkylation reaction was confirmed by FTIR analyses and the degree of substitution by elemental analysis. Contact angle with water of more than 100° were obtained after alkylation. The cellulosic samples were furthermore characterized by means of SEM, fiber length distribution, NMR spectroscopy and thermo gravimetric analysis.  相似文献   

10.
Viscoelastic properties of cellulose microfibril—polymer composites and paper sheets were studied with dynamic mechanical analysis as a function of relative humidity in order to assess the bonding properties in cellulosic networks. The amount of associated water in the composites (equilibrium moisture content) was measured by thermogravimetry. Water plasticization was evidenced by DMA both in composite and paper samples. Polymers with high affinity to water, e.g. carboxymethyl cellulose, clearly increased the water plasticization in the composites. The plasticization behavior of paper sheet samples was also influenced by polymers. However, the effect of polymers on the plasticization was different between the composite and the paper samples. The consideration of fiber bonding domain in paper structure as a gel-like layer consisting of cellulose microfibrils, polymers, and associated water can help to unveil some of the complex mechanisms behind the strength in fibrous cellulosic materials.  相似文献   

11.
The effective utilization of raw natural fibers as indispensable component in polymers for developing novel low-cost eco-friendly composites with properties such as acceptable specific strength, low density, high toughness, good thermal properties, and biodegradability is one of the most rapidly emerging fields of research in polymer engineering and science. In fact, raw natural fiber–reinforced composites are the subject of numerous scientific and research projects, as well as many commercial programs. Keeping in mind the immense advantages of raw natural fibers, in the present article we concisely review raw natural fiber/polymer matrix composites with particular focus on their mechanical properties.  相似文献   

12.
The physical immobilization behavior of horseradish peroxidase (HRP) on cellulosic fiber surfaces was characterized using adsorption and inactivation isotherms measured by the depletion method followed by fitting of Langmuir’s and Freundlich’s models to the experimental data. The adsorption and inactivation behavior of simpler and relatively non-porous high and low crystalline cellulosic substrates (microcrystalline cellulose and regenerated cellulose) as well as more complex and porous cellulosic pulp fibers (bleached kraft softwood fibers) were investigated. The effect of the sorbent surface energy on HRP adsorption was demonstrated by increasing the hydrophobicity of the cellulosic fibers using an internal sizing agent. The influence of the fiber surface charge density on HRP adsorption was studied via modification of the cellulosic fibers using TEMPO (2,2,6,6-tetramethyl-1-piperidiniloxy radical)-mediated oxidation methods. Results showed that hydrophobic interactions had a much larger effect on HRP adsorption than electrostatic interactions. More hydrophobic fiber surfaces (lower polar surface energy) result in larger enzyme-fiber binding affinity constants and higher binding heterogeneity. It was also found that oxidation of the cellulosic fiber substrate reduces enzyme adsorption affinity but significantly increases the loading capacity per unit weight of the surface.  相似文献   

13.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

14.
Surface modification of a natural cellulosic polymer system is required to improve the physicochemical properties of the fibers to be used as reinforcement for green composite applications. Surface modification through graft copolymerization improves the existing properties of the cellulosic fibers for a number of applications. Therefore, in the present study, an attempt was made to synthesize butyl acrylate (BA)-g-Saccaharum cilliare fibers using a redox initiator. Graft copolymers were characterized through FT-IR/SEM/TGA/DTA/DTG techniques, and the effect of grafting percentage on the water absorption properties of raw as well as grafted fibers was also investigated.  相似文献   

15.
A new method is applied to classify water, termed ‘hard-to-remove (HR) water’, in a cellulosic fiber and water system from an isothermal thermogravimetric analysis (TGA). The hard-to-remove (HR) water content is defined as the moisture ratio (g of water / g of dry sample) of the fiber-water system at the transition between the constant rate zone and the falling rate zone of evaporative change in mass. Specific experimental conditions have been defined for an appropriate measurement of the HR water content. The HR water content was correlated with measurable characteristics of cellulosic fibers including water retention value and freeness. The new TGA protocol can be performed on extremely small samples as a convenient and insightful characterization technique for cellulosic fibers.  相似文献   

16.
Selecting the best brake friction composite composition amongst a set of natural fibres reinforced composites using hybrid optimization method - ELECTRE (elimination and choice translating priority) II - entropy is discussed in this article. Three sets of natural fibres containing different amounts of banana, hemp, and pineapple reinforced brake friction composites were tested according to IS 2742 (part-4) regulations on a chase friction testing machine. The experimental results have been discussed in terms of seven performance defining attributes such as coefficient of friction, fade, wear, friction stability coefficient, friction recovery, friction fluctuations, and friction variability coefficient. The composite containing 5 wt% pineapple fiber exhibit the highest coefficient of friction, whereas wear performance and friction stability remain highest for 5 wt% hemp fiber based composites. The recovery performance remains highest for the composite containing 15 wt% banana fiber, while fade, friction variability, and fluctuations remain lowest for 10 wt% banana fiber reinforced composites. The tribological results indicate that the inclusion of disparate natural fibers in varying amounts may differently affect the tribological performances and therefore to choose the best brake friction composite satisfying the maximum beneficial criteria hybrid ELECTRE II- entropy optimization technique is used. Brake friction composite containing ~10 wt% banana fibers was ranked first, in meeting the desired performance tribological properties. A comparison of this optimization approach with other multi-criteria decision-making techniques is also made for validating the performance ranking of these composites.  相似文献   

17.
Napier grass is a high-productivity perennial grass that is a very important forage for animals in the tropics. In this research work, fiber strands from Napier grass were extracted and the effect of acetic acid treatment on their chemical composition, morphological and structural changes, and tensile and thermal properties was studied. The acid treatment was carried out using glacial acetic acid solution at three different concentrations (5, 10, and 15%) for 2 h. Chemical analysis indicated lowering of amorphous hemicellulose content on acid treatment. FT-IR spectroscopic studies revealed variation of functional groups on acid treatment. Scanning electron micrographs indicated roughening of the surface of the fiber strands due to the removal of the hemicellulose layer on acid treatment. X-ray diffraction analysis indicated an increase in crystallinity of the fiber strands on acid treatment. The thermal stability and tensile properties of the fiber strands increased on acid treatment. This fiber has competitive advantages when evaluated with other natural fibers and can be developed further as a potential reinforcement in polymer matrix composites.  相似文献   

18.
The effect of several fiber surface treatments upon the dynamic mechanical behavior of piassava fiber-reinforced composites was evaluated. In the light of the experimental results obtained the critical volume fraction for the fibers to effectively perform as reinforcement was established. The results show that all treatments performed (mercerization, acetylation, and mercerization + acetylation) enhance the fiber/matrix adhesion, but some treatments also affect the fiber’s integrity. At the elastic region the storage modulus of the composites fabricated with treated fibers was higher than that of the untreated fiber-reinforced composite. However, only the composite manufactured with 10 wt% mercerized fibers showed a statistically significant increase of the storage modulus. Above T g the storage modulus was primarily governed by the volume fraction of fibers. Therefore, raw and treated fiber composites had essentially the same behavior.  相似文献   

19.
The mechanical strength and modulus of chopped carbon fiber (CF)‐reinforced polybenzoxazine composites were investigated by changing the length of CFs. Tensile, compressive, and flexural properties were investigated. The void content was found to be higher for the short fiber composites. With increase in fiber length, tensile strength increased and optimized at around 17 mm fiber length whereas compressive strength exhibited a continuous diminution. The flexural strength too increased with fiber length and optimized at around 17 mm fiber length. The increase in strength of composites with fiber length is attributed to the enhancement in effective contact area of fibers with the matrix. The experimental results showed that there was about 350% increase in flexural strength and 470% increase in tensile strength of the composites with respect to the neat polybenzoxazine, while, compressive properties were adversely affected. The composites exhibited an optimum increase of about 800% in flexural modulus and 200% in tensile modulus. Enhancing the fiber length, leads to fiber entanglement in the composites, resulted in increased plastic deformation at higher strain. Multiple branch matrix shear, debonded fibers and voids were the failures visualized in the microscopic analyses. Defibrillation has been exhibited by all composites irrespective of fiber length. Fiber debonding and breaking were associated with short fibers whereas clustering and defibrillation were the major failure modes in long fiber composites. Increasing fiber loading improved the tensile and flexural properties until 50–60 wt% of fiber whereas the compressive property consistently decreased on fiber loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Summary: This work intends to promote the use of natural fibers by comparing the behavior of isophthalic polyester matrix composites reinforced with unidirectional curaua fibers with that of unidirectional glass fiber composites. The composites were produced varying the reinforcement angle (0°, 15°, 30°, 45°, 60°, 75° and 90°) with the aim of studying the fiber orientation effect on composite strength. Composites were also made varying the fiber volume fraction (10%, 20%, 30%, 40% and 50%). The efficiency of an alkaline (5% NaOH) surface treatment of the curaua fiber was also evaluated. The unidirectional composites were characterized using tensile, flexural and short beam tests as per ASTM standards. The properties of a lamina reinforced with either glass or curaua fibers were also studied using theoretical micromechanical approach available in commercial software. The curaua fiber alkaline treatment produced higher tensile strength results compared with untreated fibers. The increase in reinforcement angle significantly decreased strength and modulus of the composites, as expected, and the glass fiber composites showed a more pronounced dependence with fiber orientation. Although the glass fiber laminas showed the best mechanical performance, the results obtained with the curaua fibers were considered similar for angles greater than 45°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号