首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bio-based continuous fibers were prepared by melt spinning cellulose acetate butyrate (CAB), cellulose nanocrystals (CNC) and triethyl citrate. A CNC organo-gel dispersion technique was used and the prepared materials (2 and 10 wt% CNC) were melt spun using a twin-screw micro-compounder and drawn to a ratio of 1.5. The microscopy studies showed that the addition of CNC in CAB resulted in defect-free and smooth fiber surfaces. An addition of 10 wt% CNC enhanced the storage modulus and increased the tensile strength and Young’s modulus. Fiber drawing improved the mechanical properties further. In addition, a micromechanical model of the composite material was used to estimate the stiffness and showed that theoretical values were exceeded for the lower concentration of CNC but not reached for the higher concentration. In conclusion, this dispersion technique combined with melt spinning can be used to produce all-cellulose nanocomposites fibers and that both the increase in CNC volume fraction and the fiber drawing increased the mechanical performance.  相似文献   

2.
The conditions required for the accurate measurement of the sulfur content of cellulose nanocrystals (CNCs) by conductometric titration are discussed. CNCs from sulfuric acid hydrolysis are electrostatically stabilized in aqueous suspension due to the introduction of charged sulfate ester groups onto the surface of the crystallites during reaction. The sulfur content thus largely reflects the surface charge of the crystals, and is crucial to the characterization and understanding of material properties. Conductometric titration is commonly used to quantify the sulfur content of CNCs, however, the exhaustive removal of free acid by dialysis and the necessity, type, quantity and duration of ion-exchange resin treatments are not always consistent. Here we explore the standard conditions of dialysis, ion-exchange, and the reproducibility of titration results. Extensive dialysis is found to be effective in the removal of free acid, but similar results are also achieved in shorter times and with less water using membrane ultrafiltration. It is also shown that the conditions of ion-exchange most commonly employed in the literature can lead to inaccurate sulfur contents. Finally, good agreement is obtained between the sulfur contents of different CNC batches prepared using the same hydrolysis conditions, and from titration and elemental analysis when thoroughly purified, well-dispersed samples, and appropriate resin conditions are used.  相似文献   

3.
Cellulose - A novel, environmentally friendly and simple method for chemical functionalization of microcrystalline cellulose (MCC) to produce organophilic cellulose nanocrystals (CNC-ODA) is herein...  相似文献   

4.
Mercerized wood cellulose was oxidized by 4-acetamide-TEMPO/NaClO/NaClO2 system at 60 °C and pH 4.8 for 1–5 days. Mostly individual nanocrystals 4–7 nm in width and 100–200 nm in length were obtained by ultrasonication of the oxidized product in water. The nanocrystals had the cellulose II structure, and carboxylate contents of 2.0–2.4 mmol/g, indicating that these carboxylate groups were selectively formed on the cellulose II crystallite surfaces in mercerized cellulose. Moreover, the original wood cellulose and mercerized cellulose were acid-hydrolyzed, and then subjected to the TEMPO-mediated oxidation under the same conditions at pH 4.8 to prepare reference samples. TEM images, light transmittance and rheological properties of water dispersions showed that the nanocrystals prepared from mercerized cellulose by the TEMPO oxidation and sonication in water had the highest dispersibility of individual nanocrystals with less amounts of bundles in water, resulting from the highest carboxylate contents.  相似文献   

5.
Cellulose nanocrystals were successfully oxidized with sodium hypochlorite using catalytic amounts of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical at pH 10 in water. Carboxylate groups were selectively introduced at the surface of the crystals up to a total acid content of 1200 mmol kg?1 without damaging the integrity of the crystals. The final acid content can easily be tuned by varying the amount of oxidant introduced. The effect of temperature, the quantity of oxidant and co-catalyst on the reaction kinetics were studied. Several methods were used for the characterization of the oxidized material like field emission scanning electron microscopy, diffuse reflectance infrared spectroscopy and thermogravimetric analysis.  相似文献   

6.
There is continuing interest in the growing family of nanocellulosic materials prepared from plant cell wall material. While most of the research on cellulose nanocrystals has focused on the product of sulfuric acid hydrolysis stabilized by surface sulfate half-esters, cellulose nanocrystals with surface carboxyl groups have also been prepared by oxidation of lignocellulosic materials with ammonium persulfate. The major difference is that the persulfate oxidation leads to nanocrystals stabilized by surface carboxyl groups. Some properties of cellulose nanocrystals from cotton and wood, prepared by persulfate oxidation, are compared with those observed for nanocrystals prepared by sulfuric acid hydrolysis. Evidence from polarized light microscopy showed that the nanocrystal suspensions prepared by persulfate oxidation also form chiral nematic ordered phases in water.  相似文献   

7.
8.
Carboxylated cellulose nanocrystals (CCN) and cellulose nanocrystals (CNC) were prepared from borer powder of bamboo by two different kinds of procedures: one-step approach with ammonium persulfate for CCN and two-step approach with sulfuric acid for CNC. The obtained samples were characterizated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results show that the particles of CCN and CNC present spherical shape with diameters of 20–50 and 20–70 nm, respectively. The crystallinity of CCN and CNC is significantly improved after a series of chemical treatment, which is up to 62.75 and 69.84 %, respectively. The research indicates that the borer powder from bamboo could be an excellent raw material for manufacturing CNC in a low-cost and environmental-friendly way. Rational and sustainable utilization of the bamboo borer powder to develop new bioproducts holds great potential value for industry and offers many benefits and opportunities.  相似文献   

9.
Cellulose - From a green chemistry perspective, cryogrinding of cellulose fibers conducted under mild conditions is introduced as a rapid, facile, and scalable methodology for the mechanochemical...  相似文献   

10.
Cellulosic nanocomposite membranes were prepared by incorporation of cellulose nanocrystals (CNCs) into a hydroxypropyl cellulose (HPC) matrix using a mixing/evaporation technique. CNCs were obtained from filter paper using the sulfuric acid hydrolysis method with the aid of ultrasonication. The relationship between the microstructure and mechanical properties of the CNCs/HPC nanocomposite membranes was studied. Scanning electron microscopy showed that the CNCs were well dispersed in the HPC matrix, and the fracture surface demonstrated a fibrous characteristic. With increasing CNCs content, the tensile strength and Young’s modulus of the CNCs/HPC nanocomposite membranes gradually increased. At 5 wt% content of CNCs, the strength was increased by 525 % and the Young’s modulus by 124 % compared with pure HPC membrane. Moreover, the effect of the phase change of HPC on the mechanical properties of the CNCs5wt%/HPC nanocomposite membranes and the corresponding mechanism were also studied.  相似文献   

11.
A study primarily focused on the interactions between ADP-stimulated human platelets and PEGylated polystyrene substrates is described in this paper. The platelet–surface interactions were investigated using colorimetric acid phosphatase assay. Two types of amine-containing polymeric hydrogel materials based on poly(ethylene glycol) (PEG), H2N–PEG–OCH3 and H2N–PEG–NH2, were used to PEGylate polystyrene surfaces derivatized with maleic anhydride by amidation at alkaline pH. In addition, comparative studies using surfaces non-covalently adsorbed by bovine serum albumin (BSA) or fibrinogen (Fg) were also conducted. The assay results showed that no significant platelet adhesion was observed when PEGylated surfaces or BSA-coated surfaces were exposed to unstimulated gel-filtered platelets (GFP). However, upon ADP-stimulation, platelet adhesion to the surfaces under investigation in this study all increased to varying degrees. Most importantly, the results showed that polystyrene surfaces PEGylated using H2N–PEG–NH2 were most effective in resisting platelet adhesion when assays were performed using ADP-stimulated GFP. By PEGylating the surfaces of polystyrene microtiter wells via the amidation reaction described in this paper, it is demonstrated that (i) higher degree of surface PEGylation is favored at more alkaline pH and (ii) polystyrene substrates capable of more effectively resisting the adhesion of ADP-stimulated GFP can be obtained by the PEGylation reaction carried out at pH 9.1 using H2N–PEG–NH2.  相似文献   

12.
Polystyrene (PS) brushes were prepared on oxide passivated silicon by the surface initiated polymerization (SIP) technique. From an AIBN-type free radical initiator, which was silanized and immobilized on silicon wafers, styrene brushes were directly polymerized and grafted from the surface. The formation of the initiator monolayer and, subsequently, the polymer brush on the surface were monitored by X-ray photoelectron spectroscopy (XPS) and ellipsometry. Friction force measurements were performed by atomic force microscopy (AFM), using a 5 microm SiO2 colloidal sphere tip and under systematically varied solvent environments (nonpolar to polar), to demonstrate the dependence of brush lubricity on solvation. The relative uptake of solvents in the PS brush was determined by quartz crystal microbalance (QCM), and it correlates well with friction data. It is surmised that, in poor solvent environments, the polymer brush exists in a collapsed conformation, giving rise to the higher observed friction response.  相似文献   

13.
This work investigates reinforcing poly(lactic acid) (PLA) nanocomposites using triazine derivative-grafted cellulose nanocrystals (CNCs). A hydrophobic triazine derivative was synthesized and applied to modify CNCs to improve their thermal stability and diminish the hydrophilicity of the nanoparticles. CNCs before and after modification were used to reinforce PLA nanocomposites by a hot compression process. The results of thermogravimetric analysis indicated that the initial thermal decomposition temperature of modified nanocrystals was improved by approximately 100 °C compared to the original CNCs. That is, the thermal stability of modified cellulose nanocrystals was improved due to the shielding effect of CNCs by a hydrophobic aliphatic amine layer on the surface of the nanoparticles. The results of dynamic contact angle measurements revealed a decrease of hydrophilicity of the modified CNCs. The results from scanning electron microscopy and a UV–Vis spectrophotometer revealed that the compatibility between the modified nanocrystals and the PLA was improved. Finally, the results of tensile tests indicated a significant improvement in terms of breaking strength and elongation at the break point.  相似文献   

14.
Alkenyl succinic anhydride (ASA) is a reactive sizing agent that can impart good water repellence to paper by decreasing the wettability of the cellulose fibers. However, ASA can undergo hydrolysis, which is detrimental to the ASA sizing efficiency. In order to improve the ASA emulsion stability and ASA sizing efficiency, we used cationically modified cellulose nanocrystals (CNCs) to stabilize the cationic starch-emulsified ASA. Transmission electron microscope observation revealed that ASA droplets were well shielded by both the cationic CNCs and cationic starch, which may be responsible for the improved stabilization of ASA. The Hercules size test sizing degree, contact angle and particle size measurements demonstrated that cationic CNCs–ASA sized paper exhibited improved results in comparison with the control (without cationic CNCs under otherwise the same conditions). Furthermore, the resulting cationic CNCs–ASA system can improve the tensile index and burst index of the sized paper.  相似文献   

15.
In order to examine the applicability of the diffusion-limited Ostwald ripening model to the growth kinetics of nanocrystals, platinum nanocrystals prepared by two different methods have been investigated by a combined use of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). One of the methods of synthesis involved the reduction of chloroplatinic acid by sodium citrate while in the other method reduction was carried out in the presence of polyvinylpyrrolidone (PVP) as a capping agent. The growth of platinum nanocrystals prepared by citrate reduction in the absence of any capping agent follows a Ostwald ripening growth with a D(3) dependence. In the presence of PVP, the growth of platinum nanocrystals does not completely follow the Ostwald ripening model, making it necessary to include a surface reaction term in the growth equation. Thus, the growth of platinum nanocrystals in the presence of PVP has contributions both from diffusion and surface reaction, exhibiting a D(3)+D(2) type behavior.  相似文献   

16.
We studied oil in water Pickering emulsions stabilized by cellulose nanocrystals obtained by hydrochloric acid hydrolysis of bacterial cellulose. The resulting solid particles, called bacterial cellulose nanocrystals (BCNs), present an elongated shape and low surface charge density, forming a colloidal suspension in water. The BCNs produced proved to stabilize the hexadecane/water interface, promoting monodispersed oil in water droplets around 4 μm in diameter stable for several months. We characterized the emulsion and visualized the particles at the surface of the droplets by scanning electron microscopy (SEM) and calculated the droplet coverage by varying the BCN concentration in the aqueous phase. A 60% coverage limit has been defined, above which very stable, deformable droplets are obtained. The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network. Due to the sustainability and low environmental impact of cellulose, the BCN based emulsions open opportunities for the development of environmentally friendly new materials.  相似文献   

17.
Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390–400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.  相似文献   

18.
In this work, we prepared phosphorylated pulp with a phosphorous content of 1.23 mmol/g by adding an aqueous solution of NH4H2PO4 and urea to softwood pulp sheets followed by drying and curing with hot air and obtained cellulose nanofibers (CNFs) with a uniform width of 3–4 nm in approximately 100% gravimetric yield by high-pressure homogenization of the phosphorylated pulp slurry. After phosphorylation, no significant decrease in the pulp recovery ratio was observed, and the viscosity-average degree of polymerization of phosphorylated pulp was almost equal to that of the original pulp. In addition, the crystal structure and crystallinity index were almost unchanged during phosphorylation. The obtained phosphorylated CNF dispersion was highly transparent, and the maximum total light transmittance was nearly 100% when the CNF content was 0.2 wt%. The maximum viscosity of the CNF dispersions was nearly 10–100 times greater than that of conventional thickeners. Furthermore, we found that not only insufficient but also excessive phosphorylation negatively affected the gravimetric yield, transparency and viscosity.  相似文献   

19.
Layers of cellulose nanocrystals are peeled off by controlled periodate and chlorite oxidation to produce nanocrystals with a tunable width. The chemical modification increases the solubility of the polymers at the crystal surface to the extent that they preferentially exist in solution and detach from the crystal. The number of layers removed is controlled by the degree of partial oxidation. The reaction occurs on the crystal surface and at the crystal ends, resulting in crystals which are both shorter and thinner, likely with dangling chains at each end. The crystallinity index is reduced with each layer removed.  相似文献   

20.
Cellulose nanocrystals (CNCs) with similar size and various surface charge densities were prepared by sulfuric acid hydrolysis and NaOH desulfation. The influence of surface charge density and NaCl concentration on the intrinsic viscosity of CNC suspensions and predicted aspect ratio were investigated by Ubbelohde viscometer. With decreased CNC surface charge density, the intrinsic viscosity initially decreased due to the electric double layers on the CNC surface and subsequently increased due to CNC aggregation. To screen electroviscous effect, NaCl was added into CNC suspensions. With increased NaCl concentration, the intrinsic viscosity of CNC suspensions first decreased and then increased. The aspect ratios of CNCs predicted by Batchelor equation from the minimum intrinsic viscosity were consistent with that measured by transmission electron microscopy. Suspensions of CNCs with higher surface charge density needed less NaCl to obtain minimum intrinsic viscosity. The NaCl content that should be added to the suspension to predict the actual physical aspect ratio of CNC can be estimated by Debye–Hückel theory, assuming that the Debye length is equal to the CNC diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号