首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质三组分热裂解行为的对比研究   总被引:33,自引:9,他引:33  
在热天平上对比研究了生物质中的纤维素、半纤维素和木质素三种主要组分的热失重规律。结果表明,作为半纤维素模型化合物的木聚糖热稳定性差,在217℃~390℃发生明显分解;纤维素热裂解起始温度最高,且主要失重发生在较窄温度区域,固体残留物仅为6.5%;木质素表现出较宽的失重温度区域,最终固体残留物高达42%。在红外辐射机理试验台上对比研究了三组分热裂解产物随温度的变化规律。三组分热裂解生物油产量随温度变化先升后降。纤维素生物油产量在峰值上最高,但纤维素生物油热稳定性差,高温时挥发分的二次分解最明显;木聚糖和木质素生物油产量较低,表现出较好的热稳定性。三组分热裂解焦炭产量随温度升高而降低,最终纤维素热裂解焦炭产量为1.5%,而木聚糖和木质素分别为22%和26%。三组分热裂解气体产物随温度升高而增长,但在气体组成分布上因三组分的结构上的差异而不同。  相似文献   

2.
Time profiles of evolution rates of gas and tar in steam gasification of model biomass samples were examined using a continuous cross-flow moving bed type differential reactor to elucidate the interaction of the major biomass components (cellulose, xylan, lignin) during gas and tar evolution. Two types of model biomass samples (sample A: mixture of cellulose (65 wt%) and lignin (35 wt%); sample B: mixture of cellulose (50 wt%), xylan (23 wt%), and lignin (27 wt%)) were used for the experiment. In steam gasification of sample A, the evolutions of water-soluble tar and gaseous products (CO, H2, CH4 and C2H4) are significantly suppressed by the interaction between cellulose and lignin. The primary (initial) decomposition of lignin is hindered by the interaction with pyrolysate of cellulose. Then, the CO2 evolution appreciably enhanced and the evolution of water-soluble tar delays. These results may imply that the volatilization of water-soluble tar derived from cellulose is suppressed by lignin and then the decomposition of char derived from polymerized saccharides and lignin takes place, emitting mainly CO2. From the results using sample B, it was found that the addition of xylan greatly enhances the evolutions of gases (CO2, CO, CH4 and H2) and accelerates the evolution of water-soluble tar and CO2, implying that the enhancement of decomposition of water-soluble tar into gases and/or xylan decomposes into gases without significant interaction with cellulose or lignin. In addition, yields of the major tar components (levoglucosan, furfural and 5-methylfurfural) were measured using HPLC. It was observed that the interaction among cellulose, xylan and lignin suppresses the evolution of levoglucosan and significantly increases the evolution rate of 5-methylfurfural. There is an insignificant influence of interaction among cellulose, xylan and lignin for furfural evolution.  相似文献   

3.
The adsorption and viscoelastic properties of cationic xylan layers adsorbed from an aqueous electrolyte solution (NaCl 0, 1, 10, 100 mM) on a cellulose model surface were studied using quartz crystal microbalance with dissipation (QCM-D). Three cationic xylans with different charge densities were used (molecular weight, 9,600 g/mol with degrees of substitution, DS = 0.150, 0.191, and 0.259). The influences of the electrolyte concentration and charge density of cationic xylan on its adsorption onto a cellulose surface were investigated. Low charged cationic xylan was substantially more efficient in surface adsorption on cellulose compared to high charged cationic xylan at a low concentration of electrolytes. Adsorption of low charged cationic xylan decreased with increases in electrolyte concentration. However, adsorption of high cationic xylan increased with electrolyte concentration. The conformation and viscoelastic properties of the layers were interpreted by modeling the data under the assumption that the layers can be explained by the a Voigt model. Low charged cationic xylan adsorbed relatively weakly onto the cellulose surface, and formed a thicker, softer layer than high charged cationic xylan. On the other hand, high charged cationic xylan formed a thinner adsorption layer onto the cellulose surface.  相似文献   

4.
The successive extraction and re-adsorption of a linear β-(1 → 4) xylan extracted from microfibrillated birch pulp was investigated using solid-state CP/MAS 13C NMR spectroscopy, specific surface area measurements, and atomistic molecular dynamics (MD) simulations. The NMR spectra confirmed that when in contact with cellulose after re-adsorption, the xylan molecules altered their conformation from the classical left-handed threefold structure found in the bulk to a different one, presumably a cellulose-like twofold system for quantities up to the equivalent amount of extracted xylan. Combining these observations with specific surface area measurements and the surface occupied by a xylosyl residue, it was possible to show that the re-adsorbed xylan in the modified conformation occurred only within the first adsorbed layer in direct interaction with the cellulose surface. It is only when an excess xylan was added and after full cellulose surface coverage, that the subsequent deposited layers took the classical threefold organization. Following the variation of xylan conformation in terms of sequential xylan addition allowed quantifying the surface of cellulose accessible for a tight adsorption of xylan, not only for microfibrillated birch cellulose, but for other samples as well. The MD simulations confirmed that xylan in threefold conformation had a weaker affinity for the cellulose surface than its twofold counterpart, thus supporting the hypothesis of the twofold conformation for xylan at the cellulose surface. The MD simulations also showed that in contact with cellulose, the adsorbed xylan was mainly organized as an extended molecular chain aligned parallel to the cellulose chain direction.  相似文献   

5.
The interaction between a lignin film and a cellulose sphere has been measured using the colloidal probe force technique as a function of aqueous electrolyte solution conditions. The lignin film was first studied for its roughness and stability using atomic force microscopy imaging and quartz crystal microbalance measurements, respectively. The film was found to be smooth and stable in the pH range of 3.5-9 and in ionic strengths up to and including 0.01 M. This range of ionic strength and pH was hence used to measure the surface force profiles between lignin and cellulose. Under these solution conditions, the measured forces behaved according to DLVO theory. The force-distance curves could be fitted between the limits of constant charge and constant potential, and the surface potential of the lignin films was determined as a function of pH. At a pH greater than 9.5, a short range steric repulsion was observed, indicating that the film was swelling to a large extent but did not dissolve. Thus, lignin films prepared in this manner are suitable for a range of surface force studies.  相似文献   

6.
7.
The effect of high-energy radiation on wood and cellulose was investigated. By irradiation of beech wood, changes in lignin, in carbohydrates and in wood structure take place. Furthermore, new lignin carbohydrate complexes are formed. A way is shown to prevent undesirable reactions. Irradiated pulp possesses a lower degree of polymerization and a higher accessibility for chemical reactions. Processing irradiated pulp to viscose fibres will be more efficient.  相似文献   

8.
A detailed presentation was given of the discovered and studied enzymes involved in degradation of cellulose and lignin by the white-rot fungus,Sporotrichum pulverulentum (Phanerochaete chrysosporium). The fungus utilizes, for the degradation of cellulose: (a) Five different endo-1,4-Β-glucanases (b) One exo-1,4-Β-glucanase (acting synergistically with the endoglucanases) (c) Two 1,4-Β-glucosidases The regulation, induction, and catabolite repression of the endoglucanases have been studied in depth and the results of these studies were also presented. In addition to the hydrolytic enzymes,S. pulverulentum also produces the oxidative enzyme cellobiose oxidase that is of importance for cellulose degradation. Another unconventional enzyme is cellobiose: quinone oxidoreductase, which is of importance for both cellulose and lignin degradation. It reduces quinones from the lignin under oxidation of cellobiose from the cellulose. It has recently been discovered thatS. pulverulentum produces two acidic proteases of importance for cellulose degradation since they enhance the endoglucanase activity, particularly in young cultures of the fungus grown on cellulose. The enzymes involved in lignin degradation are not known nearly as well as these involved in cellulose degradation. However, extracellular phenol oxidases, laccase, and peroxidase have been shown to be involved in and necessary for lignin degradation to take place. A phenol oxidase-less mutant ofS. pulverulentum cannot degrade lignin unless a phenol oxidase is added to the medium. Recently, an enzyme splitting the α—Β bond in the propane side chain has been discovered by Kirk and coworkers. Several enzymes involved in the metabolism of vanillic acid, always a metabolite in lignin degradation, have been discovered and studied in our laboratory. Presentations of the enzymes for decarboxylation, demethoxylation, methanol oxidation, ring cleavage, and intracellular quinone reduction by NAD(P)H: quinone oxidoreductase were given. A discussion of possibilities for a specific enzymic primary attack on the native lignin, as well as of the likeliness for an unspecific radical nature of this attack, was also given.  相似文献   

9.
10.
In this work, poly(ethylene terephthalate)/organically modified montmorillonite (PET/o‐MMT) nanocomposites were prepared via direct melt compounding in a twin‐screw extruder. The main objective was to study the effects of using a polyester ionomer (PETi) as a compatibilizer to promote the intercalation and/or exfoliation of the o‐MMT in the PET. The o‐MMT content was 0, 1, 3, or 5 wt % and the PETi/o‐MMT mass ratio was 0/1, 1/1, or 3/1. The PETi was efficient to promote the intercalation/exfoliation of the o‐MMT in the PET matrix, as revealed by wide angle X‐ray scattering and transmission electron microscopy. Rheological characterization showed that the PET/o‐MMT nanocomposites exhibited a higher complex viscosity at low frequencies than PET, which is characteristic of materials presenting yield strength. Moreover, the higher the content and/or the degree of intercalation/exfoliation of the o‐MMT, the more the nanocomposite behaved like a solid because of a percolated structure formed by the o‐MMT layers, and the more the storage and loss modulus, G′ and G″, became independent of the frequency at low frequencies. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3084–3091, 2007  相似文献   

11.
Novel high-strength, micro-fibrillated cellulose (MFC)-reinforced polypropylene (PP) composites were prepared using maleic anhydride polypropylene (MAPP) and a cationic polymer having a primary amino group (CPPA) as coupling agents. Un-dried kraft pulp was micro-fibrillated into nano- to submicron-wide fibrils by kneading with powdered PP and the coupling agents via a twin-screw extruder. The composites were prepared by injection molding. The MFC-reinforced PP composites containing both coupling agents MAPP and CPPA (combination system) showed extremely high mechanical strength compared with the MFC-reinforced composite containing only MAPP. The tensile strength of a 30 wt% MFC-PP composite containing the combination system was 27 % higher than that of the composite containing only MAPP, and more than 60 % higher than that of neat PP. In addition, the heat distortion temperature, under a 1.82-MPa flexural load, of the composite with the combination system was 17 °C higher than that of the composite with MAPP only, and 34 °C higher than that of neat PP. The anisotropy of the modulus and strength in the injection-molded MFC composites was lower than that of glass fiber-reinforced PP.  相似文献   

12.
The production of cellulose-derived biofuels and biochemicals, such as bioalcohols and bioplastics, from lignocellulose requires the isolation of cellulose by lignin removal or delignification processes. While the remaining lignin and its phenolic fragments have been reported to inhibit the biological conversion of cellulose, we observed that the catalytic hydrolysis of cellulose also can be inhibited most likely because of an associative interaction between cellulose and lignin. The associative interaction between cellulose and the functional groups of lignin was proven by gel-permeation-chromatography measurement of regenerated mixtures of lignin and cellulose which simulate the lignocellulose-derived cellulose containing lignin as an impurity. Chemical bonds between cellulose and lignin were hypothesized using lignin model compounds containing known functionalities such as hydroxyl, methoxy, phenyl, allyl, and carboxyl groups in order to explain the effects of lignin on the hydrolysis of cellulose. The yield of glucose from cellulose dropped when carboxylic and hydroxyl groups were present possibly because of the formation of ether and ester bonds between the lignin and cellulose. These observations may help develop the chemical processes and therefore convert the inedible biomass resource of lignocellulose-based cellulose containing lignin and its derivatives to the valuable fuels and chemicals.  相似文献   

13.
This article outlines some of the factors influencing the choice of a suitable reactor for using immobilized biocatalysts. We have concentrated on biochemical engineering parameters of immobilized biocatalysts, which are important with respect to their application in industrial processes.  相似文献   

14.
Thermal behavior of lignin and cellulose from waste composting process   总被引:2,自引:0,他引:2  
The lignin and cellulose were extracted from reference material (leaves and twigs) and food of compost at different times composting: zero (raw), 30, and 120 days. According to thermogravimetric analysis and its derivative and differential scanning calorimetry curves for these samples, were verified during composting process there were considerable changes in its thermal profiles, as well as, characteristics lignin in cellulose samples and cellulose in lignin samples. These features were found by fourier transformed infrared spectroscopy.  相似文献   

15.
16.
A mild method for the separation of cellulose/hemicellulose from extractives free sawdust is described. Sequential treatments with an equimolar mixture of BCl3 and BBr3 remove polysaccharide components from a white pine sawdust sample. Spectroscopic analyses, including solution and solid-state NMR spectroscopy, confirm a reduction in the amount of aliphatic sugars in solid samples and show that extracted components consist only of polymeric sugars and are free of aromatics. Staining with fluorescent and colorimetric dyes confirm that the sawdust sample after boron trihalide treatment is primarily lignin, with no detectable polysaccharides.  相似文献   

17.
Porous and nonporous metallic Ag nanostructures were fabricated with ease by using cellulose fiber as a template.  相似文献   

18.
Aspen wood substrates with varying degrees of deacetylation, xylan, and lignin removal have been prepared and submitted to enzymatic hydrolysis with a cellulase/hemicellulase preparation for an extended constant period of hydrolysis. Controlled deacetylation has been achieved by treating wood with various alkali metal hydroxide solutions, at various alkali/wood ratios. It has been found that samples with the same extent of deacetylation produce the same sugar yields upon enzymatic hydrolysis. Increased degree of deacetylation increases the yield of sugars obtained from enzymatic hydrolysis, all other compositional parameters held constant. The acetyl group removal is proportional to the stoichiometric relation between added base and wood acetyl content, i.e., the same number of milliequivalents of base/weight of wood remove the same extent of acetyl groups, regardless of the concentration of the base solution. No cation effects are found among Li, Na, and K alkali hydroxide solutions, suggesting that swelling is not as important a parameter as is the removal of the acetyl groups from the xylan backbone in determining the extent of hydrolyzability of the resulting sample.  相似文献   

19.
Cellulose nanowhiskers (CNWs) were chemically modified by acetylating to obtain acetylated cellulose nanowhiskers (ACNWs) which could be well dispersed in acetone. The chemical modification was limited only on the surface of CNWs which was confirmed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Surface substitution degree of ACNWs was evaluated to be 0.45 through X-ray photoelectron spectroscopy (XPS). Fully bioresource-based nanocomposite films were manufactured by incorporation of ACNWs into cellulose acetate (CA) using a casting/evaporation technique. Scanning electron microscope (SEM) demonstrated that ACNWs dispersed well in the CA matrix, which resulted in high transparency of all CA nanocomposites. The tensile strength, Young’s modulus and strain at break of all CA nanocomposites exhibited simultaneous increase in comparison with neat CA matrix. At the content of 4.5 wt% ACNWs, the tensile strength, Young’s modulus and strain at break of the CA nanocomposite film were increased by 9, 39, and 44 % respectively.  相似文献   

20.
The postradiation dry distillation of cellulose and lignin has been studied. During the course of irradiation to 3 MGy, the weights of samples remained almost unchanged. The overpoints of lignin and cellulose irradiated at 2.2 MGy decrease by ~80° and ~100°, respectively. A third of the condensate from cellulose and almost a half that from lignin were distilled off at lower temperatures. Thermally unstable compounds are formed in cellulose; these compounds are predominantly converted into furans upon subsequent heating. The distillation of irradiated lignin affords a smaller amount of tar, but it is richer in methoxyphenols. The aqueous organic fraction distilled off has a higher concentration of soluble organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号