首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A robust sequential quadratic programming method   总被引:9,自引:0,他引:9  
The sequential quadratic programming method developed by Wilson, Han and Powell may fail if the quadratic programming subproblems become infeasible, or if the associated sequence of search directions is unbounded. This paper considers techniques which circumvent these difficulties by modifying the structure of the constraint region in the quadratic programming subproblems. Furthermore, questions concerning the occurrence of an unbounded sequence of multipliers and problem feasibility are also addressed.Work supported in part by the National Science Foundation under Grant No. DMS-8602399 and by the Air Force Office of Scientific Research under Grant No. ISSA-860080.Work supported in part by the National Science Foundation under Grant No. DMS-8602419.  相似文献   

3.
4.
The stabilized sequential quadratic programming (SQP) method has nice local convergence properties: it possesses local superlinear convergence under very mild assumptions not including any constraint qualifications. However, any attempts to globalize convergence of this method indispensably face some principal difficulties concerned with intrinsic deficiencies of the steps produced by it when relatively far from solutions; specifically, it has a tendency to produce long sequences of short steps before entering the region where its superlinear convergence shows up. In this paper, we propose a modification of the stabilized SQP method, possessing better “semi-local” behavior, and hence, more suitable for the development of practical realizations. The key features of the new method are identification of the so-called degeneracy subspace and dual stabilization along this subspace only; thus the name “subspace-stabilized SQP”. We consider two versions of this method, their local convergence properties, as well as a practical procedure for approximation of the degeneracy subspace. Even though we do not consider here any specific algorithms with theoretically justified global convergence properties, subspace-stabilized SQP can be a relevant substitute for the stabilized SQP in such algorithms using the latter at the “local phase”. Some numerical results demonstrate that stabilization along the degeneracy subspace is indeed crucially important for success of dual stabilization methods.  相似文献   

5.
Chen  Liang  Zhu  Junyuan  Zhao  Xinyuan 《中国科学 数学(英文版)》2022,65(11):2397-2422
Science China Mathematics - In this paper, we accomplish the unified convergence analysis of a second-order method of multipliers (i.e., a second-order augmented Lagrangian method) for solving the...  相似文献   

6.
A duality theory is developed for multistage convex stochastic programming problems whose decision (or recourse) functions can be approximated by continuous functions satisfying the same constraints. Necessary and sufficient conditions for optimality are obtained in terms of the existence of multipliers in the class of regular Borel measures on the underlying probability space, these being decomposable, of course, into absolutely continuous and singular components with respect to the given probability measure. This provides an alternative to the approach where the multipliers are elements of the dual of L with an analogous decomposition. However, besides the existence of strictly feasible solutions, special regularity conditions are required, such as the “laminarity” of the probability measure, a property introduced in an earlier paper. These are crucial in ensuring that the minimum in the optimization problem can indeed be approached by continuous functions.  相似文献   

7.
Summary. We analyze the convergence of a substructuring iterative method with Lagrange multipliers, proposed recently by Farhat and Roux. The method decomposes finite element discretization of an elliptic boundary value problem into Neumann problems on the subdomains plus a coarse problem for the subdomain nullspace components. For linear conforming elements and preconditioning by the Dirichlet problems on the subdomains, we prove the asymptotic bound on the condition number , or ,where is the characteristic element size and subdomain size. Received January 3, 1995  相似文献   

8.
《Optimization》2012,61(6):715-738
In this article, a nonlinear semidefinite program is reformulated into a mathematical program with a matrix equality constraint and a sequential quadratic penalty method is proposed to solve the latter problem. We discuss the differentiability and convexity of the penalty function. Necessary and sufficient conditions for the convergence of optimal values of penalty problems to that of the original semidefinite program are obtained. The convergence of optimal solutions of penalty problems to that of the original semidefinite program is also investigated. We show that any limit point of a sequence of stationary points of penalty problems satisfies the KKT optimality condition of the semidefinite program. Smoothed penalty problems that have the same order of smothness as the original semidefinite program are adopted. Corresponding results such as the convexity of the smoothed penalty function, the convergence of optimal values, optimal solutions and the stationary points of the smoothed penalty problems are obtained.  相似文献   

9.
The aim of this paper is to propose an algorithm, based on the optimal level solutions method, which solves a particular class of box constrained quadratic problems. The objective function is given by the sum of a quadratic strictly convex separable function and the square of an affine function multiplied by a real parameter. The convexity and the nonconvexity of the problem can be characterized by means of the value of the real parameter. Within the algorithm, some global optimality conditions are used as stopping criteria, even in the case of a nonconvex objective function. The results of a deep computational test of the algorithm are also provided. This paper has been partially supported by M.I.U.R.  相似文献   

10.
In this paper, we present several constraint qualifications, and we show that these conditions guarantee the nonvacuity and the boundedness of the Lagrange multiplier sets for general nondifferentiable programming problems. The relationships with various constraint qualifications are investigated.The author gratefully acknowledges the comments made by the two referees.  相似文献   

11.
In the sequel of the work reported in Liu et al. (1999), in which a method based on a dual parametrization is used to solve linear-quadratic semi-infinite programming (SIP) problems, a sequential quadratic programming technique is proposed to solve nonlinear SIP problems. A merit function to measure progress toward the solution and a procedure to compute the penalty parameter are also proposed.  相似文献   

12.
Described here is the structure and theory for a sequential quadratic programming algorithm for solving sparse nonlinear optimization problems. Also provided are the details of a computer implementation of the algorithm along with test results. The algorithm maintains a sparse approximation to the Cholesky factor of the Hessian of the Lagrangian. The solution to the quadratic program generated at each step is obtained by solving a dual quadratic program using a projected conjugate gradient algorithm. An updating procedure is employed that does not destroy sparsity.  相似文献   

13.
In this paper, a new feasible sequential quadratic programming (FSQP) algorithm is proposed to solve the nonlinear programming, where a feasible descent direction is obtained by solving only one QP subproblem. In order to avoid Maratos effect, a high-order revised direction is computed by solving a linear system with involving some “active” constraints. The theoretical analysis shows that global and superlinear convergence can be deduced.  相似文献   

14.
In this paper, a sequential quadratically constrained quadratic programming (SQCQP) method for unconstrained minimax problems is presented. At each iteration the SQCQP method solves a subproblem that involves convex quadratic inequality constraints and a convex quadratic objective function. The global convergence of the method is obtained under much weaker conditions without any constraint qualification. Under reasonable assumptions, we prove the strong convergence, superlinearly and quadratic convergence rate.  相似文献   

15.
In this paper, we present an original method to solve convex bilevel programming problems in an optimistic approach. Both upper and lower level objective functions are convex and the feasible region is a polyhedron. The enumeration sequential linear programming algorithm uses primal and dual monotonicity properties of the primal and dual lower level objective functions and constraints within an enumeration frame work. New optimality conditions are given, expressed in terms of tightness of the constraints of lower level problem. These optimality conditions are used at each step of our algorithm to compute an improving rational solution within some indexes of lower level primal-dual variables and monotonicity networks as well. Some preliminary computational results are reported.  相似文献   

16.
We present an iterative method for minimizing strictly convex quadratic functions over the intersection of a finite number of convex sets. The method consists in computing projections onto the individual sets simultaneously and the new iterate is a convex combination of those projections. We give convergence proofs even for the inconsistent case, i.e. when the intersection of the sets is empty.Work of this author was partially supported by CNPq under grant No. 301280/86-MA.  相似文献   

17.
We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed spaces. Applying these results, we extend some results about saddle point optimality criteria in mathematical programming.  相似文献   

18.
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the strong second-order sufficient condition for optimality (without any constraint qualification assumptions). We prove a stronger superlinear convergence result than the above, assuming the usual second-order sufficient condition only. In addition, our analysis is carried out in the more general setting of variational problems, for which we introduce a natural extension of sSQP techniques. In the process, we also obtain a new error bound for Karush–Kuhn–Tucker systems for variational problems that holds under an appropriate second-order condition.  相似文献   

19.
The Mortar finite element method with Lagrange multipliers   总被引:19,自引:0,他引:19  
Summary. The present paper deals with a variant of a non conforming domain decomposition technique: the mortar finite element method. In the opposition to the original method this variant is never conforming because of the relaxation of the matching constraints at the vertices (and the edges in 3D) of subdomains. It is shown that, written under primal hybrid formulation, the approximation problem, issued from a discretization of a second order elliptic equation in 2D, is nonetheless well posed and provides a discrete solution that satisfies optimal error estimates with respect to natural norms. Finally the parallelization advantages consequence of this variant are also addressed. Received December 1, 1996 / Revised version received November 23, 1998 / Published online September 24, 1999  相似文献   

20.
We are interested in this paper to determine the properties which are, in the primal, related to the boundedness properties of the set of the Lagrange multipliers. In convex programming it is shown that it is more or less equivalent to the generealized Slater condition. From there, we generalize to Banach spaces all the results on this topic which were known for finite dimensional spaces in differentiable and locally Lipschitz programming.
Zusammenfassung Wir untersuchen in dieser Arbeit Eigenschaften des primalen Problems im Zusammenhang mit der Beschränktheit der Menge der Lagrange-Multiplikatoren. Bei konvexen Programmen ist dies im wesentlichen gleichwertig mit der verallgemeinerten Slater-Bedingung. Von daher verallgemeinern wir alle einschlägigen Resultate aus der differenzierbaren oder der lokal Lipschitz-stetigen Optimierung von endlichdimensionalen Räumen auf Banach-Räume.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号