首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reactive uptake of N(2)O(5) on aqueous sulfuric acid solutions was studied in the presence of 1-component (octadecanol) and 2-component (octadecanol + phytanic acid) monolayers. In the 1-component monolayer experiments, the reactive uptake coefficient depended strongly on the molecular surface area of the surfactant. Also, the 1-component monolayer showed significant resistance to mass transfer even when the fractional surface coverage of the surfactant was less than 1. For example, a monolayer of 1-octadecanol with a fractional surface coverage of 0.75 decreased the reactive uptake coefficient by a factor of 10. This is consistent with previous studies. In the 2-component monolayer experiments, the reactive uptake coefficient depended strongly on the composition of the monolayer. When the monolayer contained only straight-chain molecules (1-octadecanol), the reactive uptake coefficient decreased by a factor of 42 due to the presence of the monolayer. However, when the monolayer contained 0.20 mole fraction of a branched surfactant (phytanic acid) the reactive uptake coefficient only decreased by a factor of 2. Hence, a small amount of branched surfactant drastically changes the overall resistance to reactive uptake. Also, our results show that the overall resistance to reactive uptake of 2-component monolayers can be predicted reasonably accurately by a model that assumes the resistances to mass transfer can be combined in parallel.  相似文献   

3.
Racemic 2,4-di-O-acyl-myo-inosityl 1,3,5-orthoesters undergo transesterification catalyzed by sodium carbonate with varying ease of reaction in the solid state; reactions in solution and melt do not show such varied differences. An interesting crystal of a 1:1 molecular complex of highly reactive racemic 2,4-di-O-benzoyl-myo-inosityl 1,3,5-orthoformate and its orthoacetate analogue exhibited better reactivity than the latter component alone. Single-crystal X-ray structures of the reactants have been correlated with the observed differences in the acyl-transfer efficiencies in the solid state. Although each of the derivatives helically self-assembles around the crystallographic 2(1) axis linked through O-H...O hydrogen bonding, the pre-organization of the reactive groups (C=O [El] and OH [Nu]), C-H...O and the C-H...pi interactions are significantly more favourable for the reactive derivatives than the less reactive ones. Bond-length distributions also showed differences; the O-C bond of the axial benzoyl group, which gets cleaved during the reaction, is longer (1.345-1.361 A) relative to the chemically equivalent O-C bond of the equatorial benzoyl group (1.316-1.344 A) in the reactive derivatives. These bond-length differences are not significant in the less reactive derivatives. The overall molecular organization is different too; the strikingly discrete helices, which may be viewed as "reaction tunnels" and are held by interhelical interactions, are clearly evident in the reactive derivatives in comparison with the less reactive ones.  相似文献   

4.
The octavinyl polyhedral oligomeric silsesquioxane (POSS) grafted polypropylene (PP) was first prepared by reactive blending. The structure and properties of physical blending and reactive blending composites of PP/POSS were investigated by wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA). WAXD analysis shows that the POSS in the reactive blending composites has better compatibility with PP than in the physical blending composites. The β-form crystalline hence disappears even the non-reactive POSS can act as an effective β-nucleating agents. DSC analysis shows the reactive blending composites have higher crystalline temperature while POSS in the physical blending composites have little effect on the crystalline temperature. The modulus of reactive blending composites increases in the presence of POSS, while that of the physical blending composites decreases with increasing POSS content.  相似文献   

5.
Stable-isotope trapping combined with mass spectrometry (MS) neutral loss scanning has recently been developed as a high-throughput method for the in vitro screening of major reactive metabolites. In fact, detection and identification of minor reactive metabolites are equally important since the minor metabolites, even though at low levels, may be highly reactive and also play an important role in drug-induced adverse reactions. In this study, 2-acetylthiophene, clozapine, troglitazone and 7-methylindole were selected as model compounds to further validate the advantages of this method for rapid detection and structural characterization of minor glutathione (GSH) adducts derived from reactive metabolites. The utility of the current method was clearly demonstrated by successful identification of novel reactive metabolites at low levels and also minor ones either masked by non-specific responses or co-eluted with other conjugates. In comparison with existing methods, this method is sensitive, efficient, and suitable for rapid screening and more complete profiling of reactive metabolites.  相似文献   

6.
A flow reactor coupled to a chemical ionization mass spectrometer was used to study the reactive uptake coefficients at 273 K of N2O5 on aqueous 60 wt % sulfuric acid solutions coated with insoluble organic monolayers. Both straight-chain surfactants (1-hexadecanol, 1-octadecanol, and stearic acid) and a branched surfactant (phytanic acid) were studied. The reactive uptake coefficient decreased dramatically for straight-chain surfactants. The decrease ranged from a factor of 17 to a factor of 61 depending on the type of straight-chain surfactant. In contrast to the straight-chain data, the presence of phytanic acid did not have a significant effect on the N2O5 reactive uptake coefficient (the decrease was less than the uncertainty in the data) compared to the uncoated solution. In addition to measuring the reactive uptake coefficients, we also investigated the relationship between properties of the monolayers and the reactive uptake coefficients. The reactive uptake coefficients measured on aqueous sulfuric acid subphases showed a relationship to the surface area occupied by the surfactant molecules. However, data obtained with other subphases did not overlap with this trend.  相似文献   

7.
A theoretical investigation on the nonadiabatic processes of the D(+) + H(2) reaction system has been carried out by means of exact three-dimensional nonadiabatic time-dependent wave packet calculations with an extended split operator scheme (XSOS). The diabatic potential energy surface newly constructed by Kamisaka et al. (J. Chem. Phys. 2002, 116, 654) was employed in the calculations. This study provided quantum cross sections for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, which contrasted markedly to many previous quantum theoretical reports on the (DH(2))(+) system restricted to the total angular momentum J = 0. These quantum theoretical cross sections derived from the ground rovibrational state of H(2) show wiggling structures and an increasing trend for both the reactive charge transfer and the nonreactive charge transfer but a decreasing trend for the reactive noncharge transfer throughout the investigated collision energy range 1.7-2.5 eV. The results also show that the channel of the reactive noncharge transfer with the largest cross section is the dominant one. A further investigation of the v-dependent behavior of the probabilities for the three channels revealed an interesting dominant trend for the reactive charge transfer and the nonreactive charge transfer at vibrational excitation v = 4 of H(2). In addition, the comparison between the centrifugal sudden (CS) and exact calculations showed the importance of the Coriolis coupling for the reactive system. The computed quantum cross sections are also compared with the experimental measurement results.  相似文献   

8.
Reactive Blue 19 (RB 19), its reactive form (RB 19-VS) and its hydrolyzed form (RB 19-OH) were examined using liquid secondary ion mass spectrometry/tandem mass spectrometry (LSIMS/MS/MS) in the negative-ion mode under low-energy collision conditions (240–300 eV). Structurally characteristic fragment ions were obtained, none of which has been previously reported for these reactive dyes. Among the ions obtained were SO3? ions, ions due to central amino cleavage and reactive group cleavage, and ions due to loss of SO3 and SO2. Possible pathways for the formation of product ions are proposed. The structural information obtained should help to characterize and identify reactive dyes better.  相似文献   

9.
Magnesium in methanol is an effective reagent for the chemoselective reduction of peroxides, including ozonides. Mg/MeOH is significantly more reactive than Me(2)S or PPh(3) and somewhat more reactive than Zn/HOAc.  相似文献   

10.
采用DSC方法研究了聚对苯二甲酸乙二酯 (PET)和热致性液晶共聚酯 6 0PHB PET (LCP)体系在少量扩链剂双 (2 唑啉 ) (BOZ)存在下形成的反应性共混物的非等温结晶动力学 .结果表明反应性共混物的Avrami指数均在 3 0~ 4 5之间 ,BOZ的加入使反应共混物中PET组分的结晶速率降低 ;表明BOZ对酯交换的促进作用 ,使所生成的共聚酯中PET嵌段的数均序列长度变短 ,而使结晶在某种程度上较为困难 ,但对体系的成核和结晶生长机理无明显影响 .结果还表明 ,随冷却速率的增大结晶峰向低温方向移动  相似文献   

11.
12.
Novel reactive dyes with mono- and bi-acyl fluoride reactive groups have been designed and synthesized, which are obtained by using 2-amino-8-naphthol-6-sulfonic acid or 1-amino-8-naphthol-3,6-disulfonicacid as the coupling component and 4-aminobenzoyl fluoride (PABF) as the diazo component. Their structures have been defined by nuclear magnetic resonance spectroscopy and ultraviolet–visible spectra (UV—Vis). The novel reactive dyes were evaluated on cotton by using the exhaust dyeing method. The properties were examined in detail, and the results showed that the dye concentration of 4% (o.w.f), pH = 9, and salt-free was the most effective condition. The fixation of the novel reactive dyes on cotton was 60.27% and 64.13%, respectively. The micro-fluorine-containing reactive dyes have favorable dyeing properties owing to the covalent bond formed between the reactive group of dyes and the functional group of cotton fibers, which can achieve salt-free dyeing of cotton.  相似文献   

13.
For toxicological-based structure-activity relationships to advance, will require a better understanding of molecular reactivity. A rapid and inexpensive spectrophotometric assay for determining the reactive to glutathione (GSH) was developed and used to determine GSH reactivity (reactGSH) data for 21 aliphatic derivatives of esters, ketones and aldehydes. From these data, a series of structure-activity relationships were evaluated. The structure feature associated with reactGSH was an acetylenic or olefinic moiety conjugated to a carbonyl group (i.e. polarized alpha,beta-unsaturation). This structure conveys the capacity to undergo a covalent interaction with the thiol group of cysteine (i.e. Michael- addition). Quantitatively reactGSH of the alpha,beta-unsaturated carbonyl compounds is reliant upon the specific molecular structure with several tendencies observed. Specifically, it was noted that for alpha,beta-unsaturated carbonyl compounds: (1) the acetylenic-substituted derivatives were more reactive than the corresponding olefinic-substituted ones; (2) terminal vinyl-substituted derivatives was more reactive than the internal vinylene-substituted ones; (3) methyl substitution on the vinyl carbon atoms diminishes reactivity and methyl-substitution on the carbon atom farthest from the carbonyl group causes a larger reduction; (4) derivatives with carbon-carbon double bond on the end of the molecule (i.e. vinyl ketone) were more reactive than one with the carbon-oxygen bond at the end of the molecule (i.e. aldehyde) and (5) the ester with an additional unsaturated vinyl groups were more reactive than the derivative having an unsaturated ethyl group.  相似文献   

14.
Thermal behaviour of blends based on N,N'-bis(4-itaconimidophenyl) ether (IE) and 4,4'-bis(4-allyl-2-methoxyphenoxy) benzophenone (R1) or 4,4'-bis(2-allylphenoxy) benzophenone (R2) are described in this paper. The reactive diluent content was varied from 5-50% (mass/mass) in these blends. A decrease in the melting point and exothermic peak temperature was observed with increasing mass percent of reactive diluent. Thermal stability of blends was affected at high mass percentage of reactive diluents. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
A new flow reactor has been developed that allows the study of heterogeneous kinetics on an aqueous surface coated by an organic monolayer. Computational fluid dynamics simulations have been used to determine the flow characteristics for various experimental conditions. In addition a mathematical framework has been developed to derive the true first-order wall loss rate coefficient, k(1st)(w), from the experimentally observed wall loss rate, k(obs). Validation of the new flow reactor is performed by measuring the uptake of O(3) by canola oil as a function of pressure and flow velocity and the reactive uptake coefficients of N(2)O(5) by aqueous 60 wt % and 80 wt % H(2)SO(4). Using this new flow reactor, we also determined the reactive uptake coefficient of N(2)O(5) on aqueous 80 wt % H(2)SO(4) solution coated with an 1-octadecanol (C(18)H(37)OH) monolayer. The uptake coefficient was determined as (8.1 +/- 3.2) x 10-4, which is about 2 orders of magnitude lower compared to the reactive uptake coefficient on a pure aqueous 80 wt % H(2)SO(4) solution. Our measured reactive uptake coefficient can be considered as a lower limit for the reactive uptake coefficient of aqueous aerosols coated with organic monolayers in the atmosphere, because in the atmosphere organic monolayers will likely also consist of surfactants with shorter lengths and branched structures which will have a smaller overall effect.  相似文献   

16.
[reaction: see text] Solid functionalized porous monolithic disks with reactive polymer chains grafted to their inner pore surface have been developed for scavenging excess reagents from reaction mixtures. A poly(chloromethylstyrene-co-divinylbenzene) monolith was cut into disks and activated by graft polymerizing 4-vinyl-2,2-dimethylazlactone to its pore surface. In contrast to the direct copolymerization of reactive monomers, grafting increases the accessibility of the reactive groups. Application of the reactive disks is demonstrated in the scavenging of excess amines from reaction mixtures in different solvents.  相似文献   

17.
Two methods for implementing angular momentum decoupling approximations in quantum mechanical reactive scattering examined. Applications of both reactive and nonreactive H + H2 collisions indicate that for the most intense individual reactive transitions and for all degeneracy-averaged ones, these decoupling methods (especially the “proper” decoupling method) yield results in good agreement with those of fully-coupled calculations. However, for the less intense reactive transitions and all individual nonreactive transitions, very large errors can result from use of these approximate methods.  相似文献   

18.
An inorganic–organic composite material (MCPAM) consisting of magnesium chloride and polyacrylamide, was applied to remove reactive dye (Cibacron Red FN-R) from aqueous solution through coagulation–flocculation process. MCPAM with the ratio of 90% MgCl2/10% PAM was the best ratio in removing reactive dye. Kinetics of reactive dye removal was investigated using pseudo-kinetics model and it fits pseudo-second-order reaction model. The mechanism of reactive dye removal was investigated through physicochemical properties of supernatant, flocs, and sludge. The change of conductivity and pH denotes the interactions between reactive dye and MCPAM. The chemical structure, settling, and microstructure of sludge indicate the formation of sludge during coagulation–flocculation process. The settled sludge volume and sludge volume index (SVI) that of MCPAM was lower than that of MgCl2. The flocs formed using MCPAM was also relatively compact and larger in size compared to that of MgCl2. The reactive dye removal was optimized through central composite design whereby color removal (%) and chemical oxygen demand (COD) reduction (%) were optimized by five operating factors, namely, concentration of dye, pH, dosage of MCPAM, agitation speed, and agitation time. The optimal values reported for color removal (%) and COD reduction (%) were of 97–98% and 60–81%, respectively.  相似文献   

19.
Plasma treatment of a polymeric surface could involve at least three major mechanisms: (1) direct interaction of reactive species in the low-temperature plasma state with the surface (line of sight irradiation effect), and (2) chemical reactions of plasma-induced reactive species with the surface, and (3) reactions among reactive species and the surface (plasma polymerization). The first and the third effects are considered to be limited to the surfaces which directly contact with plasma (glow). The second effect is not limited to the surfaces that contact with plasma state but can penetrate beyond the plasma zone by diffusion. Using an assembly of fibers, of which only the top layer contacts with plasma (glow), the penetration of chemical changes caused by plasma exposure was investigated. Results indicate that the fluorination effect (incorporation of fluorine-containing moieties on the surface of polymeric substrate) penetrates through a considerable thickness of the assembly of fibers, depending on the porosity (gas permeability) of the system. Chemical reactions of plasma-induced (chemically) reactive but nonpolymerizing species with the substrate fibers seems to predominate. The direct interactions of energetic species, such as ions, electrons, and electronically excited species, with polymeric surfaces seems to play relatively minor roles in the plasma treatment investigated. The major role of plasma, in this case, seems to be creating such chemically reactive species. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
We have observed solid‐state growth of pre‐existing silver nanoparticles (AgNPs) upon exposure to trace (ppb) concentrations of reactive gases at room temperature. The consequent change in localized surface plasmon resonances alters the visible absorbance of dried, printed sensor spots made from inks of 10 nm‐AgNPs and provides a novel mechanism for trace detection and dosimetry of reactive gases. Colorimetric sensor arrays based on these AgNP inks offer dosimetric identification of acidic and oxidizing gases and other reactive vapors with limits of detection below ppb levels for 1 h exposures. For an array of AgNP inks with various capping agents, a unique color response pattern is observed for each specific analyte. Excellent discrimination among 11 reactive gases was demonstrated using standard chemometric methods. The chemically induced sintering of NPs paves the way for novel solid‐state sensors for the ultrasensitive detection of reactive gases and their application to the monitoring of trace airborne pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号