首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张晶  史伟超  谢续明 《高分子学报》2011,(10):1125-1131
在N,N-二甲基乙酰胺/四氢呋喃(DMAc/THF)混合溶剂中,在正硅酸乙酯(TEOS)存在条件下,通过溶胶-凝胶法原位制备了聚醚酰亚胺(PEI)/SiO2复合材料.在该复合材料中,当SiO2含量低于20 wt%时,透射电镜(TEM)和扫描电镜(SEM)的观察表明,SiO2纳米粒子可以均匀分散,粒径可在80~300 n...  相似文献   

2.
Polyethyleneimine(PEI)/acrylamide(AAM) hydrogels were synthesized by γ-radiation-induced polymerization/crosslinking of aqueous mixtures containing different ratios of PEI and AAM. The gel percentage and equilibrium degree of swelling (EDS) of the synthesized hydrogels were investigated. The compositions of the hydrogels produced were found to be different from the feed composition. Ion-chromatography technique was used to determine the amount of Pb (II) and Cd (II) absorbed by the hydrogel. The maximum binding capacity of the PEI/AAM hydrogels, for Pb and Cd was found to be 19 and 12.6 mg/g, respectively, (at 100 ppm). PEI/AAM hydrogels had better metal uptake efficiency than the pure AAM hydrogel at concentrations less than 50 ppm. Pure PEI was observed to be highly degrading type polymer on exposure to gamma radiation. TGA and FT-IR techniques were used to characterize the prepared hydrogels.  相似文献   

3.
The transmittance of polyethylenimine (PEI)/cinnamic acid (CA) aqueous mixture was close to zero at 20–40°C, and it began to increase around 40°C due to the disassembling of the self-assembly of the PEI/CA conjugate. As the concentration of sodium dodecyl sulfate (SDS) increased, the increasing rate of the transmittance decreased and the onset temperature increased, indicating that the self-assembly of the PEI/CA conjugate became more stable against heat with the aid of SDS. Tween 20 could also suppress the thermally induced disassembling of the self-assembly, possibly because poly(ethylene oxide) chains of the surfactant could be entangled with the PEI chains. Dodecyltrimethyl ammonium bromide (DTAB) did not have an effect on the temperature-dependent self-assembling phenomena as much as SDS and Tween 20 did. The interfacial tension of the PEI/CA/SDS aqueous mixture and that of the PEI/CA/Tween 20 aqueous mixture at 70°C were lower than the respective tensions observed at 25°C. On the contrary, the interfacial tension of the PEI/CA/DTAB aqueous mixture at 70°C was higher than that observed at 25°C, possibly because the PEI/CA conjugate could lose its surface activity at the higher temperature due to the adsorption of DTAB on CA molecules.  相似文献   

4.
Min Peng  Qun Chen   《Chemical physics letters》2008,456(4-6):189-192
Solid-state 1H wide-line and 31P magic angle spinning NMR were applied to a series of PEI(polyethylenimine)/DNA complexes. The experimental results revealed that the higher the nitrogen/phosphorus (N/P) molar ratio is, the more phosphorus atoms of DNA are engaged in the electrostatic interaction with PEI. 1H spin–diffusion experiments manifested that the aggregation degree of DNA in the complexes decreases greatly when N/P ratio increases from 0.5 to 3 and changes only slightly with further increase of N/P ratio, indicating that DNA disperses in the matrix of PEI on the molecular level at higher N/P ratio.  相似文献   

5.
Amino‐terminated hyperbranched polysiloxane (AHBSi) with high degree of branching (0.8) is used to improve the compatibilization of polyetherimide (PEI)/allyl bisphenol A modified bismaleimide (BD) blend. The relationship between the compatibility and thermal/thermal‐oxidative stability of the AHBSi/PEI/BD system is intensively investigated. Although PEI has high thermal stability, the PEI/BD blend has poorer thermal stability than BD resin due to the incompatibility. With the addition of AHBSi into the PEI/BD blend, AHBSi chemically connects PEI and BD, leading to the increased compatibility; moreover, interestingly, both thermal and thermo‐oxidative stabilities are significantly improved. Under a N2 atmosphere, the addition of 0.5 wt% of AHBSi increases the initial degradation temperature of the PEI/BD blend from 395°C to 412°C. The thermodegradation kinetics were studied, and results show that the AHBSi/PEI/BD system has much higher activation energy of degradation in both N2 and air atmospheres. The origin behind these interesting results is intensively investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
pH and cinnamic acid (CA)-triggerable liposome was prepared by stabilizing dioleoylphosphatidylethanolamine (DOPE) bilayer with polyethyleneimine (PEI)/palmitic acid (PA) mixture. PEI/PA mixture was air/water interface-active, possibly due to the formation of PEI/PA salt conjugate. When the weight ratio of DOPE to PEI/PA mixture was 200:1, 100:1, 50:1, and 20:1, the fluorescence quenching degree of calcein loaded in the DOPE/PEI/PA assembly prepared using PBS (10 mM, pH 7.4) was 70.7%, 68.7%, 35.3%, and 14%, respectively, indicating that DOPE could be assembled into liposome at the physiological pH value with the aid of the PEI/PA mixture. The hydrodynamic mean diameter of liposome increased from 289 nm to 702 nm on increasing the weight ratio of the DOPE to PEI/PA mixture, possibly because of the bulky PEI chains. The release degree in 120 seconds at pH 4.5, pH 6.0, pH 7.4, and pH 9.0 was about 85%, 24.1%, 10.1%, and 62.0%, respectively, when the suspension of liposome of which the DOPE to PEI/PA mixture weight ratio was 50:1 (pH 7.4) was injected into the release medium of different pH values. The triggered release upon the acidification (i.e., pH 7.4–4.5) and the alkalization (i.e., pH 7.4–9.0) was possibly because PA and PEI were deionized under acidic and alkali conditions, respectively; thus the salt bridge of PEI/PA conjugate could break down. The DOPE liposome also exhibited CA-triggered release. The release degree in 120 seconds at 25°C was 23.1% and it was higher than the release degree at 50°C, 10.9%, possibly because CA could render PEI chains condensed and assembled under upper the critical solution temperature.  相似文献   

7.
Phase behavior in domains of immiscible blends of poly(pentamethylene terephthalate)/poly(ether imide) (PPT/PEI) and poly(hexamethylene terephthalate)/poly(ether imide) (PHT/PEI) were investigated using differential scanning calorimetry (DSC). The measured glass transition temperature (T g) reveals that aryl polyesters dissolve more in the PEI-rich phase than the PEI does in the aryl polyester-rich phase, for both PPT/PEI and PHT/PEI systems. Additionally, optical microscopy supports the conclusion that PPT (or PHT) dissolves more in the PEI-rich phase than PEI does in the PPT-rich (or PHT-rich) phase in the aryl polyester/PEI blends. Furthermore, the Flory–Huggins interaction parameters (χ12) for the PPT/PEI and the PHT/PEI blends were calculated to be 0.12 and 0.17, respectively. For the blend systems comprising of PEI and homologous aryl polyesters, the value of χ12 exhibits a trend of variation with respect to structure of aryl polyesters. For the PPT/PEI and PHT/PEI blends, investigated in this study, value of the polymer–polymer interaction parameter (χ12) between the aryl polyester and the PEI was found to be positive, which increases with the number of methylene moieties in the repeating unit of the aryl polyester, ultimately resulting in phase separation observed.  相似文献   

8.
Three kinds of chitosan (CS) derivatives have been prepared via polyethyleneimine (PEI) or polyethylene glycol (PEG) together with PEI modified chitosan. FTIR, x-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA)/differential thermal analysis (DTA) proved the successful linkage, and XPS and zeta potential analysis show that these derivatives beads possess different surface nature. The PEI modified chitosan derivative is made in acid solution (A-PEI-CS) and the one added with additional PEG (PEG–CS-PEI) has showed higher swelling degree than their counterpart derivative prepared at basic condition (B-PEI-CS). Although the nitrogen content of A-PEI-CS is higher than that of B-PEI-CS, due to the better surface hydrophilicity, the B-PEI-CS beads are more capable of adsorbing bovine serum albumin (BSA) protein. Electrostatic attraction facilitates protein adsorption in a narrow acidic pH range while hydrophilicity hinders protein adhering to the beads’ surface at any pH.  相似文献   

9.
The influence of poly(ether imide) (PEI) on the structural ordering process in heat setting from the preoriented state of poly(ethylene 2,6‐naphthalene dicarboxylate) (PEN)/PEI blend films was investigated with the two‐color online birefringence system. The addition of small amounts of noncrystallizable PEI enhanced the crystallization from the preoriented state. This was attributed to the loosening of the structure with the addition of lower density and bulkier PEI at small concentrations. With a maximum effect around 15% PEI, a further increase in the concentration resulted in a dilution effect that spatially separated the crystallizable PEN chains. This slowed down the structural rearrangement process during heat setting. At elevated temperatures, the real‐time birefringence data obtained from the developed two‐color birefringence system temporally located the relaxation that followed with an increase in birefringence. This was associated with molecular relaxation due to melting followed by crystallization and partial reorientation of crystalline regions in the original stretching direction. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1147–1159, 2001  相似文献   

10.
The addition of electrolyte (0.1 M NaCl) is shown to have a significant impact upon the surfactant concentration and solution pH dependence of the adsorption of sodium dodecyl sulfate (SDS)/polyethyleneimine (PEI) complexes at the air-solution interface. Substantial adsorption is observed over a wide surfactant concentration range (from 10(-6) to 10(-)2 M), and over much of that range of concentrations the adsorption is characterized by the formation of surface multilayers. The surface multilayer formation is most pronounced at high pH and for PEI with a lower molecular weight of 2K, compared to the higher molecular weight of 25K. These results, obtained from a combination of neutron reflectivity and surface tension, highlight the substantial enhancement in surfactant adsorption achieved by the addition of a combination of the polyelectrolyte, PEI, and a simple electrolyte. Furthermore the effect of electrolyte on the pH dependence of the adsorption further highlights the importance of the hydrophobic interaction in surface surfactant/polyelectrolyte complex formation.  相似文献   

11.
PPEKK/PEI共混物的相容性及拉伸性能   总被引:3,自引:0,他引:3  
作为相容体系 ,聚芳醚酮与聚醚酰亚胺 (PEI)共混物体系的研究受到了研究者的重视[1~ 4] .由于现在已商品化的聚芳醚酮基本上都是半结晶型聚合物 ,所以有有关无定型聚芳醚酮与聚醚酰亚胺共混物的研究鲜见报道 .含二氮杂萘酮结构聚芳醚酮酮 (PPEKK)是一种新型耐高温聚合物 ,相比于已经商品化的各种聚芳醚酮 ,PPEKK除具有优异的综合性能外 ,它最大的特点表现在以下两方面 ,PPEKK耐热性突出 ,玻璃化转变温度 (Tg)为 2 4 5℃左右 ,远高于各种商品化的聚芳醚酮 ;PPEKK为无定型聚合物 ,易溶于多种有机极性溶剂 ,大大的扩…  相似文献   

12.
Novel poly(ether–imide)/polyurethane (PEI/PU)-based nanocomposite and foamed systems reinforced with graphene nanoplatelet (GNP) were developed. Field emission scanning electron microscopy revealed hexagonal nanocelluar morphology due to fine interaction between PEI/PU and functional GNP. Compression strength and modulus values were raised up to 72.3 MPa and 27.3 GPa, respectively, for PEI/PU/GNP Foam 1, thus revealing a defensive role of GNP layer against damage. Tmax of PEI/PU/GNP Foam 0.1–1 was measured as 479–565°C. The UL 94 showed V-0 rating for nanocomposite, while foams attained V-1 rating. Water absorption capacity was improved steadily with time and was at maximum after 96 h for PEI/PU/GNP Foam 1 (12.3%).  相似文献   

13.
Polyethylenimine (PEI)/poly(vinyl alcohol) (PVA) blend membranes were prepared for the facilitated transport of CO2. The polymeric carrier PEI was retained in the blend membrane by the entanglement with PVA chains. The CO2 permeance decreased with an increase in CO2 partial pressure in feed gas, whereas the N2 permeance was nearly constant. This result clearly showed that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI weight percent in the blend membrane, whereas the selectivity of CO2 over N2 showed a maximum. The selectivity increased remarkably with increasing heat-treatment temperature of the membrane. The highest selectivity obtained reached more than 230 when the CO2 partial pressure was 0.065 atm. The prepared membrane was stable.  相似文献   

14.
An electric field enhanced method is developed for fabricating layer-by-layer (LbL) self-assembly polyelectrolyte multilayer membranes. Three kinds of electric field enhanced polyelectrolyte multilayer membranes (EPEMs), poly(diallyl dimethylammonium chloride)/poly(styrenesulfonate sodium salt) (PDDA/PSS), poly(diallyldimethylammonium chloride)/poly(acrylic acid sodium salt) (PDDA/PAA) and polyethylenimine/poly(acrylic acid sodium salt) (PEI/PAA), were self-assembled on a reverse osmosis membrane (ROM). The pervaporation performances of EPEMs for separating isopropanol–water mixtures (90/10, w/w) are all superior to those of corresponding normal self-assembled polyelectrolytes membranes (PEMs), and the selectivity increases with PDDA/PSS, PDDA/PAA and PEI/PAA in order. For (PEI/PAA)4PEI EPEM, the separation factor is 1075 and permeation flux is 4.05 kg m−2 h−1 at 70 °C. This novel method speeds up the LbL process, which makes it promising for the practical application of the LbL multilayer membrane.  相似文献   

15.
Capture and detection of metastatic cancer cells are crucial for diagnosis and treatment of malignant neoplasm. Here, we report the use of folic acid (FA) modified electrospun poly(vinyl alcohol) (PVA)/polyethyleneimine (PEI) nanofibers for cancer cell capture applications. Electrospun PVA/PEI nanofibers crosslinked by glutaraldehyde vapor were modified with FA via a poly(ethylene glycol) (PEG) spacer, followed by acetylation of the fiber surface PEI amines. The formed FA-modified nanofibers were well characterized. The morphology of the electrospun PVA/PEI nanofibers is smooth and uniform despite the surface modification. In addition, the FA-modified nanofibers display good hemocompatibility as confirmed by hemolysis assay. Importantly, the developed FA-modified nanofibers are able to specifically capture cancer cells overexpressing FA receptors, which were validated by quantitative cell counting assay and qualitative confocal microscopy analysis. The developed FA-modified PVA/PEI nanofibers may be used for capturing circulating tumor cells for cancer diagnosis applications.  相似文献   

16.
Surfactant-templated polymer films prepared from polyethylenimine (PEI), cetyltrimethylammonium bromide (CTAB), and octaethylene glycol monohexadecyl ether (C(16)E(8)) were examined and the effect of increasing the percentage of nonionic surfactant in the micelles measured using both surface and bulk-sensitive techniques. It was found that there is a strong interaction between CTAB and C(16)E(8), although no interaction between the C(16)E(8) and PEI was observed. Generally, increasing the percentage of C(16)E(8) in the micelles decreases both the thickness and degree of order in the films; however, it was observed, depending on the conditions, that films could still be formed with as little as 20% cationic surfactant. Experiments on the CTAB/Brij56/PEI system were also performed and these indicate that it is similar to the CTAB/C(16)E(8)/PEI system.  相似文献   

17.
Fully miscible poly(ether imide) (PEI)/poly(trimethylene terephthalate) (PTT) blends were obtained by melt mixing in an extruder followed by injection moulding. The viscosity of PEI, represented by the pressure at the extruder output, almost halved upon the addition of only 10% PTT, allowing the use of PEI in applications where either complex parts or thin sections must be moulded. The modulus of elasticity showed a synergistic behaviour which was absolute (modulus higher than that of any of the two components) in the blend with 10% PTT. This was attributed mainly to the decrease in specific volume upon blending. The additional absolute synergism in the yield stress of PEI‐rich blends and their ductile nature depict a set of properties that make these new materials attractive in a number of new applications. Copyright ­© 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Miscibility and morphology of poly(ethylene 2,6-naphthalate)/poly(trimethylene terephthalate)/poly(ether imide) (PEN/PTT/PEI) blends were investigated by using a differential scanning calorimeter (DSC), optical microscopy (OM), wide-angle X-ray diffraction (WAXD), and proton nuclear magnetic resonance (1H-NMR). In the ternary blends, OM and DSC results indicated immiscible properties for polyester-rich compositions of PEN/PTT/PEI blends, but all compositions of the ternary blends were phase homogeneous after heat treatment at 300 °C for more than 30 min. An amorphous blend with a single T g was obtained in the final state, when samples were annealed at 300 °C. Experimental results from 1H-NMR identified the production of PEN/PTT copolymers by so-called “transesterification”. The influence of transesterification on the behaviors of glass transition and crystallization was discussed in detail. Study results identified that a random copolymer promoted the miscibility of the ternary blends. The critical block lengths for both PEN and PTT hindered the formation of crystals in the ternary blends. Finally, the transesterification product of PEN/PTT blends, ENTT, was blended with PEI. The results for DSC and OM demonstrated the miscibility of the ENTT/PEI blends.  相似文献   

19.
The behavior at the early stage of spinodal decomposition (SD) for polyetherimide (PEI)/epoxy blends was investigated. It was found that the phase separation of PEI/epoxy blends took place by SD mechanism. The development of molar mass in the epoxy resin was gradual and then the three blends could still be considered as concentrated solutions of thermoplastic. The kinetics at the early stage of phase separation for these blends could be described by the Cahn–Hilliard–Cook linearized theory.  相似文献   

20.
The relationships among glass transition, crystallization, melting, and crystal morphology of poly(aryl ether ketone) (PAEK)/poly(other imide) (PEI) blends was studied by thermal, optical and small-angle x-ray scattering (SAXS) methods. Two types of PAEK were chosen for this work: poly(aryl ether ether ketone), PEEK, and poly(aryl ether ketone ketone), PEKK, which have distinctly different crystallization rates. Both PAEKs show complete miscibility with PEI in the amorphous phase. As PAEK crystallizes, the noncrystallizable PEI component is rejected from the crystalline region, resulting in a broad amorphous population, which was indicated by the broadening and the increase of Tg over that of the purely amorphous mixture. The presence of the PEI component significantly decreases the bulk crystallization and crystal growth rate of PAEK, but the equilibrium melting temperature and crystal surface free energies are not affected. The morphology of the PEI segregation was investigated by SAXS measurements. The results indicated that the inter(lamellar-bundle) PEI trapping morphology was dominant in the PEEK/PEI blends under rapid crystallization conditions, whereas the interspherulitic morphology was dominant in the slow crystallizing PEKK/PEI blends. These morphologies were qualitatively explained by the expression δ=D/G, where G was the crystal growth rate and D was the mutual diffusion coefficient. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号