首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

In this paper, we developed a microbial route to fabricate wood-inspired biomimetic composites comparable to natural wood. Focusing on the chemical composition of woody biomass, we performed in situ bioprocessing of bacterial cellulose (BC) imbibed in modified cationic lignin (Catlig), which exhibited significant bioactivity in improving the microbial growth dynamics. The structural and morphological characteristics were enhanced by the formation of hydrophobic and electrostatic interactions between BC and Catlig during biosynthesis. Microbially derived BC/Catlig composites exhibited enhanced thermal stability and crystallinity, with oriented cellulose fibers. The tensile properties, toughness, and specific strength of BC/Catlig composites were comparable to those of a heavy wood species (Zelkova serrata) under hydrated conditions and synthetic soft materials.

Graphic abstract
  相似文献   

2.

Herein, a green and efficient heterogeneous and photocatalytic system for the oxidation of bisnaphthols in acetonitrile under light-emitting diode will be presented. In this reaction, aerial oxygen and H2O2 have been used as oxidant in the presence of copper ferrite nanoparticles and N-hydroxyphthalimide as an organic co-catalyst. Copper ferrite nanoparticles were magnetically separated, the efficiency of which remained nearly unchanged up to five cycles. Magnetic copper ferrite nanoparticles were synthesized by sol–gel method and characterized by XRD, FT-IR, SEM, TEM, VSM and DRS analysis. In this project, both sets of diastereomers were formed.

Graphical abstract

Catalytic system for the oxidation of bisnaphthols.

  相似文献   

3.

Ionic cellulose nanocrystals (CNCs) are interesting surface-active particles for encapsulating a lipophilic liquid in water. A CNC is modified chemically to a negative charge (an S-CNC) by surface treatment with sulfuric acid. Despite the amphiphilic nature of S-CNCs, it is difficult to determine the degree of substitution for emulsification of lipophilic liquids, especially when the surface energy is low and polarity is high. Here, we control the substitution of S-CNCs by desulfation of S-CNCs (dS-CNCs) using a low-concentration hydrochloric acid solution. Decreased surface charge of S-CNCs was expected, and the lipophilic affinity of dS-CNCs increased compared with those of S-CNCs. Six oils with differing surface tensions were selected for determination of the effect of charged CNCs on emulsification. The stability of the emulsion was evaluated by emulsion fraction, emulsion particle size, and surface tension of emulsified solutions from dS-CNCs and oils.

Graphical abstract
  相似文献   

4.
Zhang  Xueqin  Guo  Haoqi  Xiao  Naiyu  Ma  Xinye  Liu  Chuanfu  Zhong  Le  Xiao  Gengsheng 《Cellulose (London, England)》2022,29(8):4413-4426

This study introduces an effective route to fabricate chitosan (CS)-based film. The films were prepared through cross-linking reaction between CS and hydroxyethyl cellulose (HEC) using epichlorohydrin (ECH) as the cross-linker and simultaneously in-situ loading with CuO nanoparticles. FT-IR and loading efficiency results indicated the occurrence of inter- and intra-molecular cross-linking reaction between CS and HEC. XRD and EDS analyses showed that the CuO nanoparticles were evenly deposited onto CS film matrixes. SEM characterization showed that the films were of compact, dense and uniform cross morphologies, as well as obvious voids. The films also exhibited desired swelling ratio and water vapor permeability. The enhanced tensile strength was obtained with a maximum value of 77.02?±?3.26 MPa, while the stretch-ability slightly decreased. The thermal stability of the films decreased after cross-linking with HEC. The antibacterial ability of the films was generally improved with the increase of HEC and ECH contents.

Graphical abstract

Preparation and properties of epichlorohydrin-cross-linked chitosan/hydroxyethyl cellulose based CuO nanocomposite films

  相似文献   

5.

Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii (CEO) were produced using the casting technique and then characterized in terms of their water barrier, tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and CEO incorporation improved the thermal stability of the films and provided excellent protection against fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for application as active food packaging or coating materials.

Graphic abstract
  相似文献   

6.

In this study, the effect of pectin extraction method on the properties of cellulose nanofibers (CNFs) isolated from sugar beet pulp (SBP) was studied. Pectin was extracted by the industrially practiced method by sulfuric acid hydrolysis or by enzymatic hydrolysis using a cellulase/xylanase enzymes mixture. The CNFs were then isolated by high-pressure homogenization and investigated in terms of their chemical composition, crystallinity, size, degree of polymerization, and re-dispersion in water after freeze-drying. The mechanical properties and surface characteristics of CNF films were also studied. The results showed that fibrillation of the de-pectinated SBP was more efficient for the acid hydrolyzed SBP. CNFs from the acid-hydrolyzed SBP had a slightly wider diameter, higher crystallinity, viscosity, and α-cellulose content but a lower degree of polymerization than CNFs from the enzyme-hydrolyzed SBP. Owing to the presence of more residual hemicelluloses in the CNFs from the enzyme-hydrolyzed SBP, the CNFs had higher re-dispersion ability in water. CNF films from enzyme-hydrolyzed SBP displayed slightly better mechanical properties and higher water contact angle than acid-hydrolyzed CNF films.

Graphic abstract
  相似文献   

7.

Life-threatening diseases, especially those caused by pathogens and harmful ultraviolet radiation (UV-R), have triggered increasing demands for comfortable, antimicrobial, and UV-R protective clothing with a long service life. However, developing such textiles with exceptional wash durability is still challenging. Herein, we demonstrate how to fabricate wash durable multifunctional cotton textiles by growing in situ ZnO-TiO2 hybrid nanocrystals (NCs) on the surface of cellulosic fabrics. The ZnO-TiO2 hybrid NCs presented high functional efficiency, owing to their high charge transfer/separation. Ultrafine fiber surface pores, utilized as nucleating sites, endowed the uniform growth of NCs and their physical locking. The resulting fabrics presented excellent UV protection factors up to 54, displayed bactericidal efficiency of 100% against Staphylococcus aureus and Escherichia coli, and optimum self-cleaning efficacy. Moreover, the functionalized textiles exhibited robust washing durability, maintaining antibacterial and anti-UV-R efficiency even after 30 extensive washing cycles.

Graphical abstract
  相似文献   

8.
Wei  Yuyi  Dai  Zhenhua  Zhang  Yanfei  Zhang  Weiwei  Gu  Jin  Hu  Chuanshuang  Lin  Xiuyi 《Cellulose (London, England)》2022,29(10):5883-5893

Increasing electromagnetic pollution calls for electromagnetic interference (EMI) shielding materials, especially sustainable, lightweight, and environmentally stable, biomass-based materials. MXene-coated wood (M/wood) is prepared by simply spraying MXene sheets on the wood surface. Varying this spray coating manipulates the shielding performance and its application to different wood species. The M/wood exhibits high electrical conductivity (sheet resistance is only 0.65 Ω/sq) with an excellent EMI shielding effectiveness of 31.1 dB at 8.2?~?12.4 GHz and is also fire retardant. Furthermore, waterborne acrylic resin (WA) is coated on M/wood to enhance environmental stability. The WA coating improves EMI shielding performance stability after water-soaking and drying testing and prevents the peeling of MXene from wood. These satisfactory properties of WA-M/wood and the facile manufacturing approach promote the feasibility of wood-based EMI shielding materials.

Graphical abstract
  相似文献   

9.
Zou  Rui  Li  Linhua  Yang  Lin  Lan  Jianwu  Liu  Hongyu  Dou  Baojie  Shang  Jiaojiao  Lin  Shaojian 《Cellulose (London, England)》2021,28(17):11081-11096

In this work, visible light response CeO2/CdS decorated cotton fabrics as durable and facile recyclable composite photocatalysts were fabricated for photo-degradation of methylene blue (MB). First of all, amino-functionalized CeO2/CdS heterojunctions were synthesized through a fast, efficient and low-cost co-precipitation method. Subsequently, the as-prepared CeO2/CdS heterojunctions were immobilized on aldehyde-functionalized cotton fabric surfaces as composite photocatalysts via "amine-aldehyde" chemical reaction. The surface microstructure and chemical composition of the CeO2/CdS decorated cotton fabric (CeO2/CdS-CF) were characterized by SEM, FTIR and XPS, respectively. The results showed that CeO2/CdS heterojunctions were successfully anchored and uniformly distributed on the surface of cotton fabric. Since the CeO2/CdS heterostructure with efficient photo-generated charge transfer and separation, the as-prepared CeO2/CdS-CF exhibited excellent photocatalytic activity, degrading MB under simulated sunlight irradiation with a degradation efficiency of 93.8% within 90 min. In addition, the degradation efficiency remained above 90.3% even after five successive degradation cycles, indicating the outstanding stability and recyclability of the obtained CeO2/CdS-CF. This work opened up a facile preparation way for the fabrication of durable and recyclable composite photocatalysts, and has a promising application in treating dye contaminated wastewater.

Graphic abstract
  相似文献   

10.
Cai  Chenchen  Luo  Bin  Liu  Tao  Gao  Cong  Zhang  Wanglin  Chi  Mingchao  Meng  Xiangjiang  Nie  Shuangxi 《Cellulose (London, England)》2022,29(13):7139-7149

A variety of liquid energy exists in papermaking engineering and has not yet been developed and utilized. In addition, for the papermaking industry, the presence of slime can seriously affect the quality of the finished paper and can lead to paper breaking. The current slime control strategies cannot completely solve the problem and also have some low toxicity. In this study, a method of self-powered sterilization of cellulose fibers by using triboelectric pulsed direct current is reported. A liquid–solid triboelectric nanogenerator (L–S TENG) was used to convert the liquid energy of nanocellulose suspension into electrical energy and convert this electrical energy into pulsed direct current for self-powered sterilization of cellulose fiber. A hydrophobic coating material is used as solid triboelectric material and electrode for sterilization. Driven by L–S TENG, the electrodes exhibited an excellent sterilization rate against four microorganisms including Escherichia coli, Aspergillus niger, Candida albicans, and Klebsiella pneumoniae, which from slime in the papermaking industry. This study could provide a basic research theory for liquid energy harvesting in the papermaking industry, and also provide a new strategy for pulp sterilization.

Graphical abstract
  相似文献   

11.
Xiong  Jun  Zhang  Zhenning  Liu  Yuhao  Yi  Jie  Wang  Yixin  Li  Bowen  Wang  Weiming  Peng  Shuai  Min  Xue  Gui  Yunyun  Li  Ming  Peng  Junjun 《Cellulose (London, England)》2022,29(2):927-939

Nowadays, freshwater shortage, energy crisis and environmental pollution are the three major threats to human beings. Bio-waste is an important source of environmental pollutant emissions and a renewable resource with great potential. Herein, we develop a photothermal material based on bagasse for solar steam generation to relieve the freshwater crisis and mitigate environmental pollution caused by bio-waste. The mainly functional part of the solar-driven steam generator here is bagasse-based photothermal aerogel (B-PTA), which composes of carbonized bagasse (CB) and bagasse-derived cellulose fiber (BDCF). The B-PTA relying on CB can effectively absorb sunlight (~?95%), resulting in a prominent light-to-heat ability. The B-PTA with DBCF has super-hydrophilicity, water transport and retention ability. Depending on the excellent light absorption and 3D water passageway, the B-PTA gives a water evaporation rate of 1.36 kg m–2 h–1, and achieves a photothermal conversion efficiency of 77.34% under 1-sun illumination (1 kW m–2). The B-PTA shows remarkable stability that the efficiency without significant change after 20 cycles. In addition, the B-PTA can effectively desalt seawater and purify dye wastewater with natural sunlight. Therefore, turning bio-waste into valuable photothermal material for solar steam generation is possible. Due to the merits of low cost, scalability, environmental friendliness, B-PTA has the potential for real-world water purification.

Graphical abstract
  相似文献   

12.

The development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application.

Graphic abstract
  相似文献   

13.
Liu  Fenglei  Hua  Shan  Hu  Qingyuan  Wang  Chao  Hu  Baowei 《Cellulose (London, England)》2022,29(3):1807-1820

A bio-adsorbent (DAWP-PEI-β-CD) was facilely prepared by introducing polyethylenimine (PEI) and β-cyclodextrin (β-CD) into dialdehyde waste paper (DAWP) via a facile two-step method. The structures, morphologies and compositions of the as-prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), solid state nuclear magnetic resonance spectrometry (NMR) and X-ray photoelectron spectroscopy (XPS) techniques. Results showed that the pH values, adsorption temperature and contact time played a vital role in uptake of Eu(III) and Au(III). Meanwhile, the adsorption behavior of Eu(III) and Au(III) could be fitted felicitously with the Langmuir and the pseudo-second-order models, and the maximum adsorption capacities of Eu(III) (pH = 6.0) and Au(III) (pH = 2.0) onto DAWP-PEI-β-CD were 424.2 and 241.3 mg/g, respectively. Further advanced spectroscopy analysis revealed that the elimination of Eu(III) was attributed to host-guest inclusion and surface complexation interaction, while adsorption of Au(III) might stem from a combination of electrostatic attraction, chelation, host-guest inclusion and redox interaction. This study demonstrated that DAWP-PEI-β-CD was a promising environmental functional material to separation and enrichment of Eu(III) and Au(III) from contaminated water.

Graphical abstract
  相似文献   

14.

In this, an efficient flame retardant composite has been prepared using biowaste derived phosphorous groups decorated graphene supported nanomaterial. The eggshell was utilized as a source of calcium carbonate, which was converted to monocalcium phosphate (CP) by phosphoric acid treatment. As-prepared monocalcium phosphate was functionalized with graphene to prepare graphene functionalized monocalcium phosphate (GCP). The GCP-coated fabric didn't ignite during the flame test and sustained more than 600 s on continuous exposure to flame without changing its initial length and shape. Whereas, graphene oxide (GO), and CP coated cotton fabric burnt out very easily within a short time. The efficient flame retardant property of as synthesized GCP coated cotton fabric was confirmed with a high limiting oxygen index (34.1) and char length of 2.5 cm was generated from the VFT test. The synthesized GCP coated cotton fabric also confirmed efficient flame retardant properties. This facile method enables an easy process for mass production of cost-effective, bio-waste derived nanomaterial for a significantly highly efficient candidate for different applications in sustainable chemistry, including flame-retardant applications.

Graphical abstract
  相似文献   

15.
Han  Fuyi  Huang  Hong  Wang  Yan  Liu  Lifang 《Cellulose (London, England)》2021,28(17):10987-10997

Cellulose nanofibril (CNF) aerogels have attracted great interests in recent years due to the low cost, sustainability and biocompatibility of raw CNF. However, the poor thermal stability and flammable feature of CNF aerogels have limited their wider applications. In this paper, polydopamine/CNF composite aerogels with good comprehensive properties are fabricated by modification of CNF with polydopamine and metal coordination bonds crosslinking. The microstructure and properties of composite aerogels are thoroughly characterized by a variety of tests. It is found that the microstructure of aerogels are more regular and the compressive strength of aerogels are enhanced by the incorporation of polydopamine and Fe3+ crosslinking. Importantly, the thermal stability and flame resistance of aerogels are significantly improved, which permit the application of composite aerogels in high-temperature thermal insulation. In addition, the reversible characteristic of metal coordination bonds allows the water induced healing of fractured composite aerogels. This study is expected to provide information for future development of green and high-performance aerogels.

Graphic abstract
  相似文献   

16.

Oceans and soils have been contaminated with traditional plastic due to its lack of degradability. Therefore, green biopolymer composites reinforced with cellulose nanocrystal-zinc oxide hybrids (ZnO hybrids) with good biodegradation ability provided a positive impact on reducing environmental challenges. In this work, the effect of various morphologies of ZnO hybrids on the biodegradation ability of poly(butylene adipate-co-terephthalate), PBAT) under seawater, soil burial, and UV aging conditions were investigated. Sheet-like ZnO hybrids (s-ZnO hybrid) efficiently enhanced the mechanical, UV-blocking properties and biodegradation ability of PBAT nanocomposite films. Compared to neat PBAT, the best tensile strength of PBAT nanocomposite with 2 wt% s-ZnO hybrid was increased by 15.1%, meanwhile this nanocomposite films showed the highest biodegradation rate after 80 days of soil degradation and 90 days of seawater degradation. Besides, three possible biodegradation mechanisms of green PBAT nanocomposite films were presented, hinting that such PBAT nanocomposite have great promising packaging applications.

Graphic abstract
  相似文献   

17.
Zou  Qian  Gai  Yinuo  Cai  Yajuan  Gai  Xiaotang  Xiong  Siwei  Wei  Nanjun  Jiang  Mengying  Chen  Liye  Liu  Yang  Gai  Jinggang 《Cellulose (London, England)》2022,29(10):5711-5724

The surgical masks have been essential consumables for public in the COVID-19 pandemic. However, long-time wearing masks will make wearers feel uncomfortable and massive discarded non-biodegradable masks lead to a heavy burden on our environment. In this paper, we adopt degradable chitosan@silver (CS@Ag) core–shell fibers and plant fibers to prepare an eco-friendly mask with excellent thermal comfort, self-sterilization, and antiviral effects. The thermal network of CS@Ag core–shell fibers highly improves the in-plane thermal conductivity of masks, which is 4.45 times higher than that of commercial masks. Because of the electrical conductivity of Ag, the fabricated mask can be electrically heated to warm the wearer in a cold environment and disinfect COVID-19 facilely at room temperature. Meanwhile, the in-situ reduced silver nanoparticles (AgNPs) endow the mask with superior antibacterial properties. Therefore, this mask shows a great potential to address the urgent need for a thermally comfortable, antibacterial, antiviral, and eco-friendly mask.

Graphical abstract
  相似文献   

18.

Bacterial cellulose (BC) is a polymer with interesting conformation and properties. BC can be obtained in different shapes and is easily modified by chemical and physical means, so its applications in the production of new materials and nanocomposites for different purposes have been in the focus of many research projects. However, one of the major challenges to address in bacterium-derived polymer technology is to find suitable carbon sources as substrates that are cheap and do not compete with food production for achieving large scale industrial applications. Agricultural wastes are defined as the residues from the growing and processing of raw agricultural products such as crops, fruits, vegetables and dairy products. Their composition can vary depending on the type of agricultural activity and harvesting conditions, but these residues are suitable for the production of BC. The aim of this review is to give insight into the production of BC using agro-wastes and an overview of the most interesting and novel applications of this biopolymer in different areas i.e. environmental applications, optoelectronic and conductive devices, food ingredients and packaging, biomedicine, and 3D printing technology.

Graphic abstract
  相似文献   

19.
Yang  Pu  Hu  Ruimin  Yu  Bin  Sun  Yiwei  Liu  Yiping  Lu  Ming 《Cellulose (London, England)》2022,29(6):3557-3568

Membrane applications for the separation of surfactant-stabilized emulsions are often constrained by a deficiency in permeability and anti-fouling properties. Herein, special wetted cotton fabric with a protective layer (P-MH@CF) for durable anti-fouling performance was synthesized by a two-step method, which was related to interfacial ion migration technology and unilateral spraying treatment. Permeability of water and separation performance of P-MH@CF membrane were investigated systematically. Emulsions stabilized by anionic, cationic, or non-ionic surfactant were successfully separated with high efficiency. In the process of separation, the oil droplets surrounded by surfactants were difficult to demulsify and gathered physically on the membrane surface to form a “cream layer”. The stearic acid acted as a protective layer, like a quilt, protecting the membrane from contamination. The membrane retained robust reusability for separation even after the “cream layer” had been washed off, which was promising for the remediation of oily wastewater containing surfactants.

Graphical abstract
  相似文献   

20.

Vulcanized fibers are all-cellulose materials made from cotton and/or wood cellulose after aqueous zinc chloride treatment. These materials were invented in the UK in the mid-nineteenth century and is widely used because of their excellent characteristics, such as impact resistance and electrical insulation. Recently the matured vulcanized fibers have been recognized as renewable and biodegradable materials and reevaluated with advanced cellulose technologies derived from cellulose nanofibers (CNFs) and all-cellulose composites. The microscopic analysis based on the improved freeze-drying method revealed that the strength of vulcanized fiber sheets can be attributed to the chemically defibrillated CNFs. The architecture is similar to all-cellulose composites made from the same raw materials in which the residual cellulose fibers serve as reinforcement, and the CNFs serve as adhesives or matrix components. In this report, we describe the history and structural characteristics of vulcanized fibers and introduce a new aspect in aqueous zinc chloride treatment of cellulose.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号