首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
农副产品制备纤维素强阴离子交换剂   总被引:3,自引:0,他引:3  
阴离子染料;脱色;农副产品制备纤维素强阴离子交换剂  相似文献   

2.
In the present work, an attempt has been made to develop bio-based composites using cardanol and eugenol based benzoxazine matrices with bio-silica as well as natural fibrous materials (coir felt, kapok fabric, jute felt and rice husk) as reinforcements. The bio-composites developed were studied for different applications viz., dielectric, water repellent, oil-water separation, sound-absorption including corrosion resistance use. Among the bio-silica reinforced benzoxazine composites, 7 wt% bio-silica reinforced cardanol composites possesses the highest value of water contact angle (147°) and the lowest value of dielectric constant (2.0) than those of other bio-silica reinforced composites. Further, the cotton fabric was coated with cardanol and eugenol based polybenzoxazines separately, whose values of water contact angles are found to be 159° and 157° with oil-water separation efficiency as 96% and 95% respectively. Furthermore, the cardanol based benzoxazine was separately reinforced with jute felt, coir felt, kapok fabric and rice-husk. The corresponding sound absorption efficiency was found to increase in the following order, Neat polybenzoxazine < rice husk < coir felt < kapok fabric < jute felt. Data resulted from corrosion studies, it was noticed that the mild steel specimen coated with bio-based benzoxazine matrices and bio-silica reinforced benzoxazine composites coated specimens exhibit an excellent resistance to corrosion. Data resulted from different studies, it is suggested that the cardanol and eugenol based bio-composites can be considered as an effective materials for microelectronics insulation, water repellent, oil-water separation, sound absorption and corrosion resistant applications.  相似文献   

3.
Graft copolymerization of methyl methacrylate (MMA) onto chemically modified coir fiber was studied using a CuSO4–KIO4 combination as initiator in an aqueous medium in the temperature range of 50–70 °C. Concentrations or [IO4−] = 0.005 mol/l and [Cu2+] = 0.002 mol/l produce optimum grafting. The effects of time, temperature, amount of coir fiber, some inorganic salts and organic solvents on graft yield have also been investigated. On the basis of experimental findings, a reaction mechanism has been proposed. Evidence of grafting was studied from fourier transform infrared spectroscopy and scanning electron microscopy of chemically modified coir and MMA‐grafted coir. Tensile properties such as maximum stress at break, extension at break and Young's modulus of untreated, defatted, chemically treated and grafted coir fibers were evaluated and compared. Grafted coir fiber showed an increase in tensile properties such as maximum stress at break, extension at break and Young's modulus. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Multilayered coir pith/nylon fabric/epoxy hybrid composites were fabricated by the hand lay-up technique. Coir pith was subjected to chemical treatment before processing and the volume fraction of coir pith was maintained in the range of 60–65%. The effect of treatment was analyzed by SEM and optical microscopy. The effects of layering and treatment on the mechanical and water transport nature of composite were analyzed. The mechanical properties of the composite decreased on exposure to water. However, the retention of impact strength increased with chemical treatment of coir pith.  相似文献   

5.
A coir fiber is composed of many tube fibers with large hollows that align in parallel. SEM observation has shown that the tube fiber existing in a coir fiber is packed by a right-handed helix crystal ribbon, and its length/diameter ratio is lower than that of the crystal ribbon by 1–2 orders of magnitude. Based on the results of TEM, the diameter of protofibrils extracted from coir fibers is 6–10 nm, while that of the microfibrils is 20–40 nm, and the length/diameter ratios of protofibrils and microfibrils are 50–250 and 25–150, respectively. According to these observed results, the packing models of the right-handed helix crystal ribbon and its multilevel fibrils have been derived and further verified through the calculation and comparison of both the crystallinity in volume and whisker sizes obtained by means of X-ray diffraction analysis.  相似文献   

6.
Natural fibres, such as flax and hemp, are typically chosen as reinforcing elements in composites to replace traditional glass fibres due to their high stiffness, strength and low strain to failure. Some plant fibres such as coir and celery however possess high strains to failure, which could be utilised in a composite to enhance toughness. This paper reports on the use of Raman spectroscopy to follow the molecular deformation of single fibres of coir and celery. The technique is also used to characterise the orientation of the cellulose structure within the fibres. It is shown by mechanical testing of fibres that both celery and coir possess a non-linear stress–strain curve. Coir fibres however exhibit high strain to failure, whereas celery fibres are shown to have a much lower value of this parameter, despite having a similar coiled fibrillar structure. It is shown by using polarised Raman spectroscopy, and rotating the specimens with respect to the polarisation axis of the laser and measuring the intensity of the 1095 cm−1 Raman band, that both celery and coir fibres combine both axial and transverse orientation, due to their coiled structures. This is also confirmed by birefringence measurements. By following the shift in the central position of this Raman band as a function of cyclic deformation of the fibres, it is shown that the coir fibres recover their molecular deformation, whereas the celery does not show the same level of recovery. This difference between the fibres is postulated to be due to the fact that coir possesses an interlaced fibrillar structure, which remains intact, whereas the celery sub-fibrils unravel and orient towards the fibre axis during deformation.  相似文献   

7.
Coir-fiber-based fire retardant nano filler has been developed for epoxy resin (ER). At first, the coir fiber was brominated with saturated bromine water and then treated with stannous chloride solution. After drying, it was grinded to nano dimension and mix well with ER for composites preparations. FTIR, DSC, and TG techniques were used to characterize the brominated coir fiber. Gravimetric analysis shows only 10% by mass of bromination on coir fiber. Bromination decreases the thermal stability of the coir fiber, but it does not affect the final stability of the composites. This study concentrates on the thermal, fire retardant, and morphological properties of nanocomposites prepared by direct mixing. The fire retardancy properties (smoke density and limiting oxygen index) of coir–epoxy nanocomposites have increased significantly.  相似文献   

8.
Cellulose/nanosilica (CNS) nanocomposite fiber has been synthesized via a novel surface modification of cellulose and nanosilica, prepared from rice husk as a low cost natural source, by anionic and cationic surfactants through electrostatic interaction. The effect of the prepared nanocomposite on the structural, mechanical, thermal and morphological properties of polysulfone nanofiltration membranes was comprehensively studied. The scanning electron microscope image was used to investigate the relationship between solidity aspect and morphological properties qualitatively and quantitatively. From the results, the membrane with 0.25 wt% of CNS fiber shows the highest mechanical strength and thermal stability with a glass transition temperature of about 201 °C. It was found that an increase in the filler content increases the surface roughness of the membranes. The same behavior was observed for hydrophilicity based on contact angle measurements (from 78.7° to 61.5°). The adsorption of dye molecules during the filtration process was studied by batch adsorption experiments obeying Langmuir isotherm (R2 > 0.91). For all samples of fabricated membranes, the rejection of Crystal Violet dye from aqueous solution was higher than 80%.  相似文献   

9.
采用机械混合法将KCl加入到纤维素、半纤维素、木质素以及稻壳和稻壳模拟物等生物质中,得到了一系列不同K含量的生物质样品,通过热重(TG)实验考察了K元素对生物质热解特性的影响.结果表明,K元素对生物质三组分热解特性的影响比较复杂,纤维素的最大热解失重速率随着KCl添加量的增加而降低,但KCl对半纤维素和木质素热解特性的影响不显著.无论是否添加KCl,模拟生物质的热解特性均可以认为是三组分热解的简单叠加.但酸预处理稻壳三组分间的稳定结构,导致其DTG曲线在300 ℃左右的热解峰由稻壳模拟物的尖峰变为肩峰,其热解焦炭收率也比稻壳模拟物的略低.此外,实验还采用浸渍法向酸预处理稻壳中添加了KCl.TG实验结果表明,K元素的存在对生物质热解具有一定的催化作用,但KCl的添加方式不同,生物质的热解特性有明显差别,生物质样品经机械混合添加KCl后,其热解焦炭收率呈下降趋势(纤维素除外),浸渍法添加的KCl导致酸预处理稻壳的最大热解失重速率和焦炭收率升高.  相似文献   

10.
Punicalagins are the main ingredients of phenolic compounds in pomegranate (Punica granatum L.) husk. A simple and accurate method for punicalagin analysis based on ethanol extraction and RP-LC using linear gradient of methanol in 0.1% TFA solution was established. The feasibility of this procedure was tested by analyzing the punicalagin level both in fresh pomegranate husk collected from different provinces in China and dried husk from a drugstore. The content of each isomer and total content of punicalagins in husk were determined. The mean value of punicalagins content in pomegranate husk was 82.4 mg g?1. The highest content of punicalagins was found in a variety of husks from Shanxi province, while the lowest content was found in the husk from the drugstore in Guangdong province.  相似文献   

11.
Research on Chemical Intermediates - Rice husk ash, which is rich in non-crystalline silica, is a by-product material obtained from the combustion of rice husk. Because rice husk ash is available...  相似文献   

12.
基于工业硅高能耗的背景,以寻找"硅"宝的方式,介绍稻壳生物质资源中硅的存在状态,从能源、环境和绿色化学角度讨论如何从稻壳中提取"硅",通过展示国内外利用稻壳硅的最新科研成果,加强科学技术的普及与推广,在了解稻壳硅背后原理的过程中,强化节能环保意识,进一步激发读者深入探究绿色化学与化工的热情。  相似文献   

13.
Qiao  Liangzhi  Liao  Yuxin  Wang  Xiawen  Wang  Shanshan  Du  Kaifeng 《Cellulose (London, England)》2022,29(13):7263-7276
Cellulose - Cellulose microspheres are commonly chromatographic media yet seriously limited in biomacromolecules separation and purification due to the slow mass transfer kinetics resulting from...  相似文献   

14.
Agro waste bio mass are creating challenges for environment in term of air pollution due to improper disposal. Rice milling is the process in which rice husk is produced as by-product. The agro-waste rice husk has tremendous potential to be used either in its raw form or in ash form. The inherent component of this waste cellulose provides enhanced properties in a reinforced composite when used as filler. Rice husk is the hard outer layer and covering rice seed, which makes reinforcement challenging in its original form. Fiber surface treatment significantly improves adhesion with matrix and various thermo chemical properties of filler as well as of composites. NaOH treatment is cost-effective and it ensures the adhesion with matrix by removal of hemicellulose and lignin. The chemical treatment of agro-waste (rice husk) is performed with 5% alkali solutions of NaOH in water. Results are compared with the properties of untreated rice husk for thermal and morphological characterizations. In the present work, we are trying to quantify the impact of chemical treatment on rice husk thermal decomposition and its kinetics. Thermogravimetric analysis and kinetics study of thermal degradation, provide key input towards pyrolysis pattern of rice husk, while FTIR and SEM analysis provide the prospects of this bio filler using a reinforcing agent to develop green composite and productive disposal. The FTIR data helps to find the possibilities of blending different bio fillers and natural fibers to find suitable reinforcing substances. The average activation energy of treated fiber is noted as 137.95 by KAS method and 108.08 by FWO method as compared to 55.56 by KAS method & 54.26 by FWO method for untreated rice husk.  相似文献   

15.
Yu  Dehai  Luo  Qi  Zhang  Jing  Wang  Qiang  Wang  Huili  Song  Zhaoping  Li  Shan  Liu  Wenxia  Zhang  Fengshan  Ji  Dandan 《Cellulose (London, England)》2022,29(16):8569-8585
Cellulose - Emulsified solid particles adsorbed at the oil–water interface can stabilise Pickering emulsions by acting as a physical barrier to the coalescence of oil droplets. Cellulose...  相似文献   

16.
Cellulose - Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not...  相似文献   

17.
Culture conditions for the production of Cellulose I and/or II structures have been investigated by transmission electron microscopy using smooth colonies of Acetobacter xylinum ATCC23769. Cells prepared from smooth colonies produce the band material composed of Cellulose II in phosphate buffer (pH 7) at 4 °C. In contrast, the same cells produce the normal twisting ribbons of Cellulose I when the incubation temperature is raised to 28 °C. The band material is also produced at 4 °C in 2% buffered glucose solution and in the standard Hestrin-Schramm medium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Soni  Raghav  Asoh  Taka-Aki  Hsu  Yu-I  Uyama  Hiroshi 《Cellulose (London, England)》2022,29(3):1667-1678
Cellulose - Cellulose can replace single-use petrochemical packaging; however, its lack of freshwater durability restricts its applicability. This study used a wet pulverization process to prepare...  相似文献   

19.
《Mendeleev Communications》2021,31(5):715-717
Nanoporous silicon carbide with a specific surface area of up to 186.45 m2 g−1 has been efficiently synthesized from waste rice husk using a magnesiothermic reduction at 950 °C as a key step. Throughout the entire process, the recovery rates of silicon, potassium and phosphorus from rice husk can reach 88.46, 91.5 and 65.5%, respectively. Turning rice husk waste into a real treasure, this promising method for producing porous SiC protects the environment and brings economic benefits.  相似文献   

20.
The significant influence of silica inside rice husk in the preparation and electrochemical performances of activated carbon are investigated. The removing of silica results in high mesoporous ratio and good rate capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号