首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterogeneous acetylation of microfibrillated cellulose (MFC) was carried out to modify its physical properties and at the same time to preserve the morphology of cellulose fibrils. The overall reaction success was assessed by FTIR together with the degree of substitution (DS) defined by titration and the degree of surface substitution (DSS) evaluated by means of XPS. Dynamic contact angle measurements confirmed the hydrophobicity improvement relative to non-modified samples. The increase of contact angle upon reaching a certain reaction time and some decrease following the further acetylation was confirmed. Mechanical properties of MFC films made from chemically modified material were evaluated using tensile strength tests which showed no significant reduction of tensile strength. According to SEM images, dimension analysis and tensile strength data, the acetylation seemed not to affect the morphology of cellulose fibrils.  相似文献   

2.
In this paper, we systematically address the performance of cellulose nanocrystals (CNs) coated flexible food packaging films. Firstly, the morphology of CNs from cotton linters and homogeneity of its coating on different substrates were characterized by transmission electronic microscopy and atomic force microscopy. Then, the 1.5 μm thick CNs coating on polyethylene terephthalate (PET), oriented polypropylene, oriented polyamide (OPA), and cellophane films were characterized for their mechanical, optical, anti-fog, and barrier properties. CNs coating reduces the coefficient of friction while maintaining high transparency (~90 %) and low haze (3–4 %) values, and shows excellent anti-fog properties and remarkable oxygen barrier (oxygen permeability coefficient of CNs coating, P’O2, 0.003 cm3 μm m?2 24 h?1 kPa?1). In addition, the Gelbo flex test combined with oxygen permeance (PO2) measurements and optical microscopy are firstly reported for evaluating the durability of coatings, revealing that the CNs coated PET and OPA provide the best performance among the investigated coated films. CNs are therefore considered to be a promising multi-functional coating for flexible food packaging.  相似文献   

3.
Cellulose - Sustainable food packaging films were developed using a combination of k-Carrageenan (k-C), hydroxyl ethyl cellulose (HEC), silicon dioxide (SiO2), and silver (Ag) nanoparticles. The...  相似文献   

4.
The interactions with water and the physical properties of microfibrillated celluloses (MFCs) and associated films generated from wood pulps of different yields (containing extractives, lignin, and hemicelluloses) have been investigated. MFCs were produced by combining mechanical refining and a high pressure treatment using a homogenizer. The produced MFCs were characterized by morphology analysis, water retention, hard-to-remove water content, and specific surface area. Regardless of chemical composition, processing to convert macrofibrils to microfibrils resulted in a decrease in water adsorption and water vapor transmission rate, both important properties for food packaging applications. After homogenization, MFCs with high lignin content had a higher water vapor transmission rate, even with a higher initial contact angle, hypothesized to be due to large hydrophobic pores in the film. A small amount of paraffin wax, less than 10%, reduced the WVTR to a similar value as low density polyethylene. Hard-to-remove water content correlated with specific surface area up to approximately 50 m2/g, but not with water retention value. The drying rate of the MFCs increased with the specific surface area. Hornified fibers from recycled paper also have the potential to be used as starting materials for MFC production as the physical and optical properties of the films were similar to the films from virgin fibers. In summary, the utilization of lignin containing MFCs resulted in unique properties and should reduce MFC production costs by reducing wood, chemical, and energy requirements.  相似文献   

5.
Gas permeation of polymers is one of the important factors to be considered in the selection of materials for many packaging applications, such as modified atmosphere packaging (MAP) for foods. Poly (ethylene therephthalate) (PET) is known to exhibit very low gas permeation compared with most polymers such as polystyrene, polyethylene and polypropylene. However, MAP applications require better barrier performance than that of PET. In the present work PET trays reinforced with organically modified sepiolite, fibrillar nanoclay, have been produced at industrial processes. Permeability to water vapour, oxygen and carbon dioxide has been studied in PET nanocomposites as well as their microstructure through transmission electron and scanning electronic microscopy (TEM and SEM), and their mechanical properties. Results show a better performance in barrier properties as well as an increase in tensile strength, and impact resistance when the sepiolite content is lower than 2.5%.  相似文献   

6.
Spherical cellulose beads having narrow particle-size distribution were prepared by the coagulation/regeneration method for small viscose droplets formed by centrifugal force in an acid bath. The influences of chemical modifications on mechanical strengths such as the hydraulic property and compressive strength were investigated, together with the effects on crystallinity, particle size and degree of swelling. Cross-linking with epichlorohydrin and substitution of hydroxyl groups in cellulose with diethylaminoethyl, carboxymethyl and cyanoethyl groups were studied. No remarkable differences were found in X-ray diffraction patterns for the cellulose beads after the chemical modification. The substitution promoted swelling of the beads and decreased the mechanical strength, probably by scission of intermolecular and/or intramolecular hydrogen bonds in cellulose. However, the cross-linking retarded the cellulose beads from swelling effectively. The beads were made significantly ha rder by the substitution, and this hardening effect competed with the softening effect of the swelling. Moreover, it was suggested that the simple compression test was useful for the prediction of the hydraulic property of the cellulose beads in the column operation. 0969--0239 © 1998 Blackie Academic & Professional  相似文献   

7.
8.
Cellulose - Recyclable cellulose nanofibril (CNF) and lignin-containing cellulose nanofibril (LCNF) coated wood flour composites were fabricated using a vacuum-filtration process for food serving...  相似文献   

9.
A study of migration of the active components of oxygen sensors into food is presented. Six types of sensors, based on different oxygen sensitive dyes (two metalloporphyrins and one ruthenium dye), polymers (polystyrene and polysulfone) and support materials, were exposed to a number of standard ‘food simulants’ recommended by FDA/EU guidelines and then assayed for migration or sensor components and changes in oxygen calibration. Both metalloporphyrin sensor dyes leached only in olive oil and in 95% ethanol (used as a positive control), at maximum levels of 19.22 μg/dm2 for PtOEPK and 113.96 μg/dm2 for PtTFPP. The RuDPP dye showed maximum leaching in 95% ethanol (25.19 μg/dm2) while also migrating in an acidic aqueous simulant. Planar supports such as polyester tended to enhance the stability of the sensor. Migration of the styrene monomer from the polystyrene encapsulation medium was concluded to be low enough to be insignificant. Migration of sensor components was shown to correlate with the changes in sensor response to oxygen. Based on these results, sensor combinations were ranked on the basis of their resistance to leaching and their general stability, safety and suitability for use on a large scale in packaged foods and related food applications was proven.  相似文献   

10.

Arrowroot starch (AA)-based films incorporated with a carnauba wax nanoemulsion (CWN), cellulose nanocrystals (CNCs), and essential oils (EOs) from Mentha spicata (MEO) and Cymbopogon martinii (CEO) were produced using the casting technique and then characterized in terms of their water barrier, tensile, thermal, optical, and microstructural properties and in vitro antifungal activity against Rhizopus stolonifer and Botrytis cinerea. Whereas the incorporation of CNCs decreased the moisture content and water vapor permeability of the AA/CWN/CNC film, the additional incorporation of either EO decreased the transparency and affected the microstructure of the AA/CWN/CNC/EO nanocomposites. MEO and CEO incorporation improved the thermal stability of the films and provided excellent protection against fruit-spoiling fungi. Because of their excellent barrier properties against fungal growth, water vapor permeability, and ultraviolet and visible light, these AA/CWN/CNC/EO films have promising potential for application as active food packaging or coating materials.

Graphic abstract
  相似文献   

11.
12.
Cellulose fibers in the form of paper sheets were chemically modified with different functional groups using trichloro-s-triazine as coupling moiety. The treatments made the paper surfaces hydrophobic, as was indicated by an increase in contact angle against water. ESCA was used for the chemical characterization of the paper surfaces. The shape of the carbon 1s peak depended on the chemical functionality of the triazine derivatives. As a reference, ESCA spectra were also recorded for the triazine derivatives precipitated on aluminum plates. The chemical composition of modified cellulose surfaces could then be determined using a computer program for the peak separation and peak area measurement.  相似文献   

13.
A fabric based on cellulose derivatives has been hydrophobized via coating with oligochloromethylethoxysiloxane and then treated with butyl alcohol, benzyl alcohol, and higher fatty alcohols. With the use of X-ray photoelectron spectroscopy, it has been shown that the reaction of alcohols with the siloxane coating proceeds through the exchange of ethoxysilane groups for higher alkoxy groups, whereas the expected reaction of chloromethyl groups with alcohols (the Williamson reaction) does not occur under the chosen conditions.  相似文献   

14.
Use of nanocomposites is a well-established approach in enhancing the mechanical and barrier properties of bionanocomposite film for food packaging applications. The seed mucilage of Ocimum basilicum was employed for the preparation of bionanocomposite films with montmorillonite (MMT) as nanofiller. The films were prepared by solvent-casting method at varied solution pH (1, 3, 5 and 9) and MMT loading (1%, 3%, 5%, 10%, 15% and 20%). The films were characterized for physical, mechanical and barrier properties in addition to microstructure and X-ray diffraction pattern. XRD analysis revealed the exfoliated dispersion of MMT at pH 9, confirming its effective interaction with the bionanocomposite film. Maximum film tensile strength was achieved at a lower MMT load of 5%. Water vapour permeability reduced with increase in MMT loading up to 5%, followed by an increase at higher MMT loadings. Film formed at pH 9 showed tensile strength of 17.3 ± 0.33 MPa and reduced water vapour permeability (WVP) of 0.21 g mm.m−2.hr−1.kPa−1.  相似文献   

15.
16.
Cellulose nanofibers have a bright future ahead as components of nano-engineered materials, as they are an abundant, renewable and sustainable resource with outstanding mechanical properties. However, before considering real-world applications, an efficient and energetically friendly production process needs to be developed that overcomes the extensive energy consumption of shear-based existing processes. This paper analyses how the charge content influences the mechanical energy that is needed to disintegrate a cellulose fiber. The introduction of charge groups (carboxylate) is achieved through periodate oxidation followed by chlorite oxidation reactions, carried out to different extents. Modified samples are then subjected to different levels of controlled mechanical energy and the yields of three different fractions, separated by size, are obtained. The process produces highly functionalized cellulose nanofibers based almost exclusively on chemical reactions, thus avoiding the use of intensive mechanical energy in the process and consequently reducing drastically the energy consumption.  相似文献   

17.
《印度化学会志》2023,100(1):100849
The necessity for lubricants has increased recently, and today's chief issue is the depletion of fossil resources, which drives up the cost of lubricants made of petroleum. As a result, current research focuses on lubricants that are made from renewable resources and are therefore environmentally benign. We can use inedible plant oils as the foundation for biodegradable bio lubricants. The locally accessible seed oils have significant uses in agriculture and nutrition, but more recently, their use in biolubricants and chemical feedstocks has increased. They are favourable to mineral-based counterparts and prospective commodities because of their unique qualities, such as lubricity, biodegradability, reduced toxicity, and reduced volatility. However, while being chemically altered, they still have rather poor cold-flow and thermo-oxidative stability concerns, which restricts their use as lubricants. To get around this restriction, numerous chemical changes have been documented, including transesterification, epoxidation, and estolide ester synthesis, all of which are covered in this paper. The current state and anticipated future trends of the global lubricant market are presented in this review. The primary goal of the current study is to provide an overview of recent non-edible plant uses in biolubricant synthesis. This study contains a review of recent research literature on the utilisation of various non-edible plant oils to create biolubricants.  相似文献   

18.
Oxygen indicators and intelligent inks for packaging food   总被引:6,自引:0,他引:6  
The detection of oxygen using optical sensors is of increasing interest, especially in modified atmosphere food packaging (MAP), in which the package, usually containing food, is flushed with a gas, such as carbon dioxide or nitrogen. This tutorial review examines the ideal properties of an oxygen optical sensor for MAP and compares them with those developed to date, including the most recent advances. The basic technologies underpinning the different indicator types are described, examples given and their potential for application in MAP assessed. This tutorial review should be of interest to the MAP industry and researchers in optical sensors and oxygen sensing.  相似文献   

19.
Chemical surface modifications of microfibrillated cellulose   总被引:1,自引:0,他引:1  
Microfibrillated cellulose (MFC) was prepared by disintegration of bleached softwood sulphite pulp through mechanical homogenization. The surface of the MFC was modified using different chemical treatments, using reactions both in aqueous- and organic solvents. The modified MFC was characterized with fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Epoxy functionality was introduced onto the MFC surface by oxidation with cerium (IV) followed by grafting of glycidyl methacrylate. The length of the polymer chains could be varied by regulating the amount of glycidyl methacrylate added. Positive charge was introduced to the MFC surface through grafting of hexamethylene diisocyanate, followed by reaction with the amines. Succinic and maleic acid groups could be introduced directly onto the MFC surface as a monolayer by a reaction between the corresponding anhydrides and the surface hydroxyl groups of the MFC.  相似文献   

20.
Cathodic electrophoretic deposition (EPD) has been utilized for the fabrication of composite films for the surface modification of NiTi shape memory alloys (Nitinol). In the proposed method, chitosan (CH) was used as a matrix for the incorporation of other functional materials, such as heparin, hydroxyapatite and bioglass. Chitosan-heparin films were deposited from solutions of non-stoichiometric chitosan-heparin complexes. It was found that the addition of anionic heparin to the solutions of cationic chitosan resulted in a significant increase in the cathodic deposition rate. The thickness of the films prepared by this method varied in the range of 0.1-3 microm. The ability of the chitosan-heparin films to bind antithrombin, as measured by binding of (125)I-radiolabeled antithrombin, was much greater than that of pure chitosan films. Composite chitosan-hydroxyapatite films, with thickness of 1-30 microm, were obtained as monolayers or laminates, containing chitosan-hydroxyapatite layers, separated by layers of pure chitosan. The hydroxyapatite nanoparticles showed preferred orientation in the chitosan matrix with the c-axis parallel to the substrate surface. The films showed corrosion protection of the Nitinol substrates in Ringer's physiological solutions. The feasibility of the fabrication of composite films containing hydroxyapatite and bioglass in the chitosan matrix has been demonstrated. The method offers the advantages of room temperature processing. The deposition mechanisms and possible applications of the films are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号