首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

2.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


3.
Heterotrimetallic complexes with a Pt---Hg---Pt arrangement are formed by reaction of zerovalent platinum complexes with [(PPh3)2RPt---HgR]; X-ray diffraction has established the structure of [(PPh3)2(2,4,6-C6H2Cl3)Pt]2Hg.  相似文献   

4.
The reductive electrochemistry of compounds of the type CpFe(CO)2L (Cp = η-C5H5, η-C5Me5; L = SP(S)(OEt)2, SP(S)(OiPr)2) has been examined by polarography, cylic voltammetry and coulometry. The first one-electron reduction step leads to a bond rupture process with formation of a mercury compound, [CpFe(CO)2]2Hg, at a mercury electrode and the corresponding dimer species at a platinum electrode. The second reduction step corresponds to the reduction of the dimer [CpFe(CO)2]2, except in the polarographic reduction of pentamethylcyclopentadienyl compounds.  相似文献   

5.
The compounds (π-C5H5)(CO)2LM-X (L = CO, PR3; M = Mo, W; X = BF4, PF6, AsF6, SbF6) react with H2S, p-MeC6H4SH, Ph2S and Ph2SO(L′) to give ionic complexes [(π-C5H5)(CO)2LML′]+ X. Also sulfur-bridged complexes, [(π-C5H5)(CO)3W---SH---W(CO)3(π-C5H5)]+ AsF6 and [(π-C5H5)(CO)3M-μ-S2C=NCH2Ph-M(CO)3(π-C5H5)], have been obtained. Reactions with SO2 and CS2 have been examined.  相似文献   

6.
Treatment of the diaminobenzene [C6H4{CH2NMe2}2-1,3] (NCN-H, 1) with one or two equivalents of cis-PtCl2(DMSO)2 leads to exclusive formation of the doubly cycloplatinated species [C6H4{CH2NMe2}2-1,5-{PtCl(DMSO)}2-2,4] (3), which upon addition of triphenylphosphine yields the bisphosphine adduct [C6H4{CH2NMe2}2-1,5-{PtCl(PPh3)}2-2,4] (4). The X-ray molecular structure of 4 revealed the presence of highly distorted square planar Pt(II) centers which is caused by close proximity of the two phosphine donor ligands. Complexes of type 3 can be regarded as suitable starting materials for the directional build-up of larger macromolecular structures.  相似文献   

7.
An unexpected trimanganese(I) tetrathiolate-bridged complex, [Mn3(CO)9(μ-SC6H5)4], with an incomplete cubane structure, was obtained by thermal reaction of [Mn2(CO)10] with [Mo(η5-C5H5)2(SC6H5)2]. The structure, established by single-crystal X-ray diffraction studies, shows the cation, [Mo(η5-C5H5)2(H)CO]+, directed towards the vacant site of the cubane structure. Possible routes by which the anion and the cation could be formed are discussed.  相似文献   

8.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

9.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

10.
The reaction of trans-[Mo(N2)2(PPh2Me)4] with the tripodal phosphine tris(2-diphenylphosphinoethyl)phosphine, PP3, in benzene has been studied. The product was recrystallized from a mixture of benzene and petroleum ether to give [Mo(PP3)2]·C5H10, whose crystal structure shows a distorted octahedral “MoP6” coordination with both phosphines acting as tridentate ligands.  相似文献   

11.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

12.
Hafnium β-diketonatochlorides HfCl2(thd)2 (1), HfCl(thd)3 (2) as well as β-diketonato-silylamide and/or siloxide derivatives of 1 namely Hf(thd)2[N(SiMe3)2]2 (3), Hf(thd)2(OSiMe3)2 (4) and Hf(thd)2(OSitBuMe2)2 (5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) were synthesized and characterized by elemental analysis, FT-IR, 1H NMR and TGA. 2 and 5 were also characterized by single-crystal X-ray diffraction. The siloxide ligands are in cis position for 5 and exert a strong trans effect. The new volatile compounds were tested as single-source precursors for the deposition of HfSixOy films by pulsed liquid injection MOCVD on Si(1 0 0) and R plane sapphire. The as-deposited at 600–800 °C films were essentially amorphous, Hf-rich (Hf/Hf + Si = 0.7–0.85) and smooth.  相似文献   

13.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

14.
The siloxyanilines o-Me3SiOC6H4NH2 (1) and p-RMe2SiOC6H4NH2 (R=H (2); R=Me (3)), and their N-silylated derivatives p-Me3SiOC6H4NHSiMe3 (4) and p-Me3SiOC6H4N(SiMe3)2 (5) have been prepared from ortho- or para-aminophenol and used in the synthesis of imido complexes. Thus, binuclear [{Ti(η5-C5H5)Cl}{μ-NC6H4(p-OSiMe3)}]2 (6) and mononuclear [TiCl2{NC6H4(p-OSiMe3)}(py)3] (7) imido complexes have been obtained from the reaction of 3 and [Ti(η5-C5H5)Cl3] or [TiCl2(NtBu)(py)3], respectively. In contrast, the reaction of 1 with TiCl4 and tBupy affords the titanocycle [TiCl2{OC6H4(o-NH)---N,O}(tBupy)2] (8). Compound 5 has also been used to prepare the niobium imide complex [NbCl3{NC6H4(p-OSiMe3)}(MeCN)2] (9), by its reaction with NbCl5 in CH3CN. These findings have been applied to the synthesis of polynuclear systems. Thus, chlorocarbosilane Si[CH2CH2CH2Si(Me)2Cl]4 (CS–Cl) has been functionalized with the ortho- and para-aminophenoxy groups to give 10 and 11, respectively. The use of 11 has allowed the formation of the tetranuclear compound 12. Attempts to synthesize terminal imido titanium complexes from 10 and TiCl4 in the presence of tBupy and Et3N, give complex 8 and carbosilane CS–Cl.  相似文献   

15.
Reaction of C5H4(SiMe3)2 with Mo(CO)6 yielded [(η5-C5H3(SiMe3)2)Mo(CO)3]2, which on addition of iodine gave [(η5-C5H3(SiMe3)2Mo(CO)3I]. Carbonyl displacement by a range of ligands: [L = P(OMe)3, P(OPri)3,P(O-o-tol)3, PMe3, PMe2Ph, PMePh2, PPh3, P(m-tol)3] gave the new complexes [(η5-C5H3(SiMe3)2 MO(CO)2(L)I]. For all the trans isomer was the dominant, if not exclusive, isomer formed in the reaction. An NOE spectral analysis of [(η5-C5H3(SiMe3)2)Mo(CO)2(L)I] L = PMe2Ph, P(OMe)3] revealed that the L group resided on the sterically uncongested side of the cyclopentadienyl ligand and that the ligand did not access the congested side of the molecule. Quantification of this phenomenon [L = P(OMe)3] was achieved by means of the vertex angle of overlap methodology. This methodology revealed a steric preference with the trans isomer (less congestion of CO than I with an SiMe3 group) being the more stable isomer for L = P(OMe)3.  相似文献   

16.
Copolymerization of ethylene with styrene using linked cyclopentadienyl-amide titanium(IV) complexes, [Me2Si(C5Me4)(R)]TiCl2 [R=tert-Bu (1), cyclohexyl (2)], and non-bridged (1,3-Me2C5H3)TiCl2(O-2,6-iPr2C6H3) (3)-MAO catalysts have been explored. Although the catalytic activity by 2 was lower than 1, 2 showed more efficient styrene incorporation than 1 under the same conditions. Moreover, the resultant copolymer prepared by 2 possessed completely different microstructure from those by 1, indicating that the nature of amide ligand affects both styrene incorporation and monomer sequence.  相似文献   

17.
Treatment of p-tert-butylcalix[6]areneH6 (H6L) with [Mo(OBut)2{[2,2′-(N)-C6H4]2(CH2CH2)}] in refluxing toluene affords, after work-up, the complex [Mo(2-NC6H4CH2CH2C6H4NHC(Me)NH-2/)LH2]·4MeCN (1), which contains an 11-membered metallocyclic ring as characterised by Synchrotron X-radiation.  相似文献   

18.
The cluster [Os3(CO)10(MeCN)2] reacts with indazole (C7H6N2) to give two isomeric products [0s3(μ-H)(μ-C7H5N2)(CO)10] in which the five-membered ring has been metallated with N-H cleavage to give an N,N-bonded isomer or with C-H cleavage to give a C,N-bonded isomer. These two isomers have very similar X-ray structures but can be clearly distinguished by 1H NMR methods. They are shown to correspond to related clusters derived from pyrazole. Benzotriazole (C6H5N3) also reacts (as shown earlier by others) to give two isomers: an N,N-bonded species [Os3(μ-H)(μ-C6H4N3)(CO)10] coordinated only through the five-membered ring and a minor C,N-bonded isomer [Os3(μ-H)(μ-C6H4N3)(CO)10], metallated at the C6 ring and coordinated through both rings. The former isomer reacts with Me3NO in acetonitrile to give [Os3(μ-H)(μ-C6H4N3)(CO)9(MeCN)] which thermally looses MeCN to produce the coupled product [Os6(μ-H)2(μ3-C6H4N3)2(CO)18] which was shown by X-ray structure determination to have all six nitrogen atoms coordinated to osmium, a novel situation for coordinated benzotriazole. The two Os3 units are linked together by an OsNNOsNN ring in a boat conformation with the whole cluster adopting C2 symmetry.  相似文献   

19.
The syntheses of the 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane-supported imido complexes [M(NR)(R′3tach)Cl2] (M = Ti or Zr (NMR only); R = But or 2,6-C6H3Pri2; R′ = Me or But) are reported, along with that of the thermally robust dibenzyl derivative [Ti(NBut)(Me3tach)(CH2Ph)2]. The tert-butylimido ligand in [Ti(NBut)(Me3tach)Cl2] undergoes exchange with ArNH2 (Ar = 4-C6H4Me or 2,6-C6H4Me or 2,6-C6H3Pri2) to form the corresponding arylimides [Ti(NAr)(Me3tach)Cl2]. The Me3tach ring in [Ti(NR)(Me3tach)Cl2] undergoes slow exchange with But3tach or Me3tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) to give the ring-exchanged products [Ti(NR)(But3tach)Cl2] and [Ti(NR)(Me3tacn)Cl2], respectively. The complexes [Ti(NR)(Me3tach)X2] (R = But or 2,6-C6H3Pri2; X = Cl or CH2Ph) exhibit room-temperature dynamic NMR behaviour via an unusual trigonal twist of the facially coordinated Me3tach ligand, and the activation parameters for these processes have been measured and are discussed. The X-ray structures of [Ti(NR)(But3tach)Cl2] (R = But or 2,6-C6H3Pri2) and [Ti(NBut)(Me3tach)(X)2] [X= Cl or CH2Ph) are reported. Me3tach and But3tach = 1,3,5-trimethyl- and tri-tert-butyl-1,3,5-triazacyclohexane, respectively.  相似文献   

20.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号