首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
埋置量子点应力分布的有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过衬底材料和外延材料的交替生长方式制备出多层排列的自组装量子点超晶格结构.这些埋置量子点的应力/应变场影响着它们的光电性能、压电性能以及力学稳定性.基于各向异性弹性理论的有限元方法,研究了埋置金字塔形应变自组织Ge/Si半导体量子点的应力/应变分布以及流体静应变和双轴应变分布,并与非埋置量子点的应力/应变分布做了比较,指出了它们之间的异同以及覆盖层对量子点应力/应变分布的影响. 关键词: 量子点 应力分布 应变分布  相似文献   

2.
宋鑫  冯淏  刘玉敏  俞重远  刘建涛 《中国物理 B》2013,22(1):17304-017304
The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxial strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs’ growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.  相似文献   

3.
系统研究了在调制掺杂AlGaAs/GaAs异质结中嵌入InAs量子点后对二维电子气输运特性的影响。使用分子束外延设备生长了量子点层与二维电子气沟道距离(Tch)不同的3个样品,霍尔测试结果表明,二维电子气的电子迁移率和载流子浓度都随Tch的减小而降低。基于几何相位分析算法对部分样品的高分辨透射电镜图像进行了处理,得到了其应变分布图。结果表明,应变主要分布在量子点的周围,并延伸到了量子点的上方。该不均匀的应力场可能是除库伦散射外影响电子迁移率降低的另一个重要因素。  相似文献   

4.
X.L. Li 《Applied Surface Science》2010,256(12):4023-4026
A quantitative thermodynamic model addressing the stability and evolution mechanism during growth process of quantum dots (QDs) in Stranski-Krastanow (SK) system is established by taking into account the thickness-dependent surface energy of wetting layer (WL). It is found that the thickness-dependent surface energy of WL prevents QDs from growing up without limit. The competition between relaxation energy of QDs and thickness-dependent surface energy of WL results in a puzzling phenomenon that WL not only can hardly capture atoms to grow, but also need release atoms into QDs during deposition process and annealing. Agreement between theoretical results and experiments implies that the established thermodynamic model could be expected to be a general approach to pursue the physical mechanisms of self-assembly of quantum dots.  相似文献   

5.
FEM combining with the K·P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%∼4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.  相似文献   

6.
J. Li  J. Y. Zhang  P. Zhang  K. Wu  J. Sun 《哲学杂志》2016,96(29):3016-3040
Creep tests were performed on the high stacking fault energy (SFE) nanotwinned (NT) Ni free-standing foils with nearly the same twin thickness at room temperature (RT) to investigate the effects of grain size and loading rate on their microstructural stability and creep behaviour. The grain growth mediated by the twinning/detwinning mechanism at low applied stresses (<800 MPa) and grain refinement via the detwinning mechanism at high applied stresses (>800 MPa) were uncovered in the present NT-Ni foils during RT creep, both of which are attributed to the interactions between dislocations and boundaries. It appears that a higher initial dislocation density leads to a faster primary creep strain rate and a slower steady-state creep strain rate. Unlike the non-twinned metals in which grain growth often enhances the creep strain rate, the twinning/detwinning-mediated grain growth process unexpectedly lowers the steady-state creep strain rate, whereas the detwinning-mediated grain refinement process accelerates the creep strain rate in the studied NT-Ni foils. A modified phase-mixture model combined with Arrhenius laws is put forward to predict the scaling behaviour between the creep strain rate and the applied stress, which also predicts the transition from grain growth-reduced to grain refinement-enhanced steady-state creep strain rate at a critical applied stress. Our findings not only provide deeper insights into the grain size effect on the mechanical behaviour of nanostructured metals with high SFE, but also benefit the microstructure sensitive design of NT metallic materials.  相似文献   

7.
界面力学性能是影响石墨烯/柔性基底复合结构整体力学性能的关键因素,因此对该结构界面切应力传递机理的研究十分必要.考虑了石墨烯和基底泊松效应的影响,本文提出了二维非线性剪滞模型.对于基底泊松比相比石墨烯较大的情况,利用该模型理论研究了受单轴拉伸石墨烯/柔性基底结构的双向界面切应力传递问题.在弹性粘结阶段,导出了石墨烯双向正应变和双向界面切应力的半解析表达式,分析了不同位置处石墨烯正应变和界面切应力的分布规律.导出了石墨烯/柔性基底结构发生界面滑移的临界应变,结果表明该临界应变低于利用经典一维非线性剪滞模型得到的滑移临界应变,并且明显受到石墨烯宽度尺寸以及基底泊松比大小的影响.基于二维非线性剪滞模型建立有限元模型(FEM),研究了界面滑移阶段石墨烯双向正应变和双向界面切应力的分布规律.与一维非线性剪滞模型的结果对比表明,当石墨烯宽度较大时,二维模型和一维模型对石墨烯正应变、界面切应力以及滑移临界应变的计算结果均存在较大差别,但石墨烯宽度很小时,二维模型可近似被一维模型代替.最后,通过与拉曼实验结果的对比,验证了二维非线性剪滞模型的可靠性,并得到了石墨烯/聚对苯二甲酸乙二醇酯(PET)基底结构的界面刚度(100 TPa/m)和界面剪切强度(0.295 MPa).  相似文献   

8.
The intermixing of Sb and As atoms induced by rapid thermal annealing (RTA) was investigated for type II GaSb/GaAs self-assembled quantum dots (QD) formed by molecular beam epitaxy growth. Just as in InAs/GaAs QD systems, the intermixing induces a remarkable blueshift of the photoluminescence (PL) peak of QDs and reduces the inhomogeneous broadening of PL peaks for both QD ensemble and wetting layer (WL) as consequences of the weakening of quantum confinement. Contrary to InAs/GaAs QDs systems, however, the intermixing has led to a pronounced exponential increase in PL intensity for GaSb QDs with annealing temperature up to 875 °C. By analyzing the temperature dependence of PL for QDs annealed at 700, 750 and 800 °C, activation energies of PL quenching from QDs at high temperatures are 176.4, 146 and 73.9 meV. The decrease of QD activation energy with annealing temperatures indicates the reduction of hole localization energy in type II QDs due to the Sb/As intermixing. The activation energy for the WL PL was found to drastically decrease when annealed at 800 °C where the QD PL intensity surpassed WL.  相似文献   

9.
Guo-Feng Wu 《中国物理 B》2021,30(11):110201-110201
The threading dislocations (TDs) in GaAs/Si epitaxial layers due to the lattice mismatch seriously degrade the performance of the lasers grown on silicon. The insertion of InAs quantum dots (QDs) acting as dislocation filters is a pretty good alternative to solving this problem. In this paper, a finite element method (FEM) is proposed to calculate the critical condition for InAs/GaAs QDs bending TDs into interfacial misfit dislocations (MDs). Making a comparison of elastic strain energy between the two isolated systems, a reasonable result is obtained. The effect of the cap layer thickness and the base width of QDs on TD bending are studied, and the results show that the bending area ratio of single QD (the bending area divided by the area of the QD base) is evidently affected by the two factors. Moreover, we present a method to evaluate the bending capability of single-layer QDs and multi-layer QDs. For the QD with 24-nm base width and 5-nm cap layer thickness, taking the QD density of 1011 cm-2 into account, the bending area ratio of single-layer QDs (the area of bending TD divided by the area of QD layer) is about 38.71%. With inserting five-layer InAs QDs, the TD density decreases by 91.35%. The results offer the guidelines for designing the QD dislocation filters and provide an important step towards realizing the photonic integration circuits on silicon.  相似文献   

10.
低维半导体材料应变分布   总被引:2,自引:0,他引:2       下载免费PDF全文
周旺民  王崇愚 《物理学报》2004,53(12):4308-4313
在各向同性弹性理论的假设下,探讨了理想简单化的二维、一维与零维半导体材料量子阱、量子线与量子点的应力和应变分布规律,并讨论了它们应力、应变与应变能密度分布之间的差异.结果有助于定性理解更复杂形状结构的低维半导体材料的应力、应变及应变能分布. 关键词: 低维材料 应变分布 量子阱 量子线 量子点  相似文献   

11.
以S-K和V-W模式生长ZnCdSe和ZnSeS量子点及其特性   总被引:1,自引:1,他引:0  
用低压金属有机化学气相外延(LP-MOCVD)技术,以Stranski Krastanow(S-K)模式,在GaAs衬底上生长了CdSe和ZnCdSe量子点(QDs)。用原子力显微镜(AFM),观测到了外延层低于临界厚度时,CdSe自组装量子点的形成过程,并把其机理归结为表面扩散效应和应变弛豫效应的联合作用。依据理论计算外延层临界厚度值的指导,用LP-MOCVD技术在GaAs衬底上生长了ZnCdSe量子点,详细观测了ZnCdSe量子点的形成和演变,这些过程可用Ostwald熟化过程和形成过程的联合作用来解释。用LP-MOCVD技术,以Volmer Weber(V-W)模式,在GaAs衬底上生长了ZnSeS量子点,随着生长时间的增加,量子点尺寸增大,而量子点密度减少,这些现象可用表面自由能来解释。  相似文献   

12.
Several sources of stress in dielectric contact layers (e.g. growing oxide films) are discussed and order-of-magnitude estimates are given for the accompanying strains. The strain distributions in isotropic layers are deduced for stresses produced by Coulomb forces, volume changes associated with diffusing defects, orienting molecular force (epitaxial) effects, and electrochemical potential gradients producing diffusion currents and growth of the layer.  相似文献   

13.
不同厚度CdSe阱层的表面上自组织CdSe量子点的发光性质   总被引:2,自引:2,他引:0  
利用变温和变激发功率分别研究了不同厚度CdSe阱层的自组织CdSe量子点的发光。稳态变温光谱表明:低温下CdSe量子阱有很强的发光,高温猝灭,而其表面上的量子点发光可持续到室温,原因归结于量子点的三维量子尺寸限制效应;变激发功率光谱表明:量子点激子发光是典型的自由激子发光,且在功率增加时。宽阱层表面上的CdSe量子点有明显的带填充效应。通过比较不同CdSe阱层厚度的样品的发光,发现其表面上量子点的发光差异较大,这可以归结为阱层厚度不同导致应变弛豫的程度不同,直接决定了所形成量子点的大小与空间分布[1]。  相似文献   

14.
可控的表面微结构在柔性电子、仿生器件和能源材料等方面均具有重要的应用价值.本文采用编织铜网作为掩模板,利用磁控溅射技术在柔性聚二甲基硅氧烷(PDMS)基底上制备具有周期分布的厚度梯度金属银薄膜,研究了薄膜在单轴压缩/拉伸过程中的形貌演化规律.实验发现,在单轴机械载荷作用下,银薄膜表面将形成相互垂直的条纹褶皱和多重裂纹.膜厚的梯度变化调制了薄膜的面内应力分布,导致褶皱在膜厚较小处率先形成,并逐渐扩展到膜厚较大区域,而裂纹则基本限定在膜厚较小区域.基于应力理论和有限元计算,对周期性厚度梯度薄膜的褶皱和裂纹的形貌特征、演化行为和物理机制进行了深入分析.该研究将有助于加深对非均匀薄膜体系的应变效应的理解,并有望通过梯度薄膜的结构设计在柔性电子等领域获得应用.  相似文献   

15.
We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 °C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∼13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. PACS 68.35.-p; 68.35.Gy; 68.65.Hb; 81.07.Ta; 81.10.Aj  相似文献   

16.
Structural damage occurs in materials subjected to repeated or fluctuating stresses that must be minimized by design to increase fatigue life, and strains distributed in a blade need to be experimentally determined for evaluating stress levels. In order to measure local strains in a rotating blade, efficient signal transmission between a sensor installed on a blade and a stationary interrogator is significantly important. In this paper a strain-independent fibre Bragg grating (FBG) sensor and a rotary optic coupler were used as means of compensating light intensity loss change arising from blade rotation. Working principles of a FBG sensor and a rotary optic coupler were detailed, and procedures for measuring local strains were also described. Eventually, strain distributions were obtained in terms of mean strain and strain amplitude. Measured strains were then directly compared with analytical ones. Experimental procedures and results offer an improved insight into a strain measurement technique for a rotating mechanical system.  相似文献   

17.
The growth of a three-dimensional (3D) InAs quantum dot (QD) crystal on a patterned GaAs (0 0 1) substrate is demonstrated. The morphology of QDs grown on a surface patterned with shallow holes is studied as a function of the amount of deposited InAs. We observe that the QDs form in the patterned holes close to each other forming lateral QD bimolecules for InAs coverages below the commonly observed critical thickness of 1.6 monolayers. When the coverage increases, the QD bimolecules coalesce to form larger single QDs. The QDs in the holes are then capped with a Ga(Al)As spacer. The buried QD array serves as a strain template for controlling the formation site of the QDs in the second layer. By tuning the growth conditions for the second and subsequent layers, we achieve a 3D InAs QD crystal with a high degree of perfection. A detail investigation of the growth on hole patterns with different periodicities is presented.  相似文献   

18.
The composition and stain distributions in the InGaN epitaxial films are jointly measured by employing various x-ray diffraction (XRD) techniques, including out-of-plane XRD at special planes, in-plane grazing incidence XRD, and reciprocal space mapping (RSM). It is confirmed that the measurement of (204) reflection allows a rapid access to estimate the composition without considering the influence of biaxial strain. The two-dimensional RSM checks composition and degree of strain relaxation jointly, revealing an inhomogeneous strain distribution profile along the growth direction. As the film thickness increases from 100 nm to 450 nm, the strain status of InGaN films gradually transfers from almost fully strained to fully relaxed state and then more In atoms incorporate into the film, while the near-interface region of InGaN films remains pseudomorphic to GaN.  相似文献   

19.
Reflection high-energy electron diffraction (RHEED) and atomic force microscopy (AFM) measurements were used to investigate the dependences of the formation process and the strain on the As/In ratio and the substrate temperature of InAs quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. The thickness of the InAs wetting layer and the shape and the size of the InAs QDs were significantly affected by the As/In ratio and the substrate temperature. The strains in the InAs layer and the GaAs substrate were studied by using RHEED patterns. The magnitude in strain of the InAs QDs formed at a low substrate temperature was larger than that in InAs QDs grown at high substrate temperature. The present results can help to improve the understanding of the formation process and the strain effect in InAs QDs.  相似文献   

20.
异质结构的应变和应力分布模型研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王庆学 《物理学报》2005,54(8):3757-3763
基于组合杆的平衡条件,分别建立了晶格失配、热失配以及由两者共同导致的异质结构应变 和应力分布模型,并获得了异质结构的晶格失配应变、热失配应变、弯曲应变以及曲率半径 的分析解. 同时,运用所建的模型,计算了HgCdTe/CdZnTe异质结构的应变和应力分布.结果 表明:应力最大值均在界面处,而中性面仅是材料厚度和弹性参数的函数,与晶格失配、晶 格弛豫、热失配等参数无关,且该异质结构的曲率半径是衬底厚度的函数,随衬底厚度的减 小而减小,而要保证HgCdTe/CdZnTe器件在液氮温度下不发生断裂,衬底的厚度必须大于临界值. 关键词: 异质结构 应变分布模型 应力分布模型 晶格失配  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号