首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
A method was developed for the determination of trace elements in crude oil by inductively coupled plasma mass spectrometry (ICP-MS) after sample dissolution in toluene and subsequent ultrasonic nebulization (USN). Carbon build-up at the interface and ion lenses was minimized by optimization of the argon to oxygen ratio in the plasma and by the desolvating action of the USN. The analyte addition technique, combined with internal standardization (115In), was the only calibration procedure capable to correct properly for signal suppression, especially observed in solutions with higher concentrations of asphaltenes. Analytical curves with good linearity (r2>0.99), and solution detection limits (LOD–3σ) of 0.1 μg l−1 for V, Ni, Co, Y, Mo, Cd, Ba and La, and in the range of 0.1–1 μg l−1 for Al, Ti, Fe, Zn, Sr, Ag, Sn and Pb were obtained. Method validation was performed by analyzing two certified reference materials. For National Institute for Standards and Technology (NIST) 1634c (V, Ni, Co), accuracy was approximately 10%, similar as observed for other 12 elements in NIST 1084a. Asphaltenes were separated from the oil bulk of crude oil samples from the Potiguar Basin (Brazil) using precipitation in heptane. The heptane-soluble fraction (maltenes) was separated by elution chromatography into three sub-fractions: (1) saturated and low molecular mass (MM) aromatics, (2) aromatics and low MM polar compounds, and (3) high MM polar compounds (resins). Trace elements were determined in these fractions after dissolution in toluene, by USN–ICP-MS. Mass balance calculations showed a significant increase of most elements (10–30 times) in the asphaltenic fraction, and in minor proportions in fraction 3, compared to the crude oil samples. Comparison with microwave-assisted acid decomposition showed good agreement, validating the proposed methodology and emphasizing its applicability for routine analysis of crude oil and other toluene soluble petroleum products.  相似文献   

2.
A method for the direct determination of volatile and non-volatile nickel and vanadium compounds in crude oil without previous treatment using direct solid sampling graphite furnace atomic absorption spectrometry is proposed. The crude oil samples were weighed directly onto solid sampling platforms using a microbalance and introduced into a transversely heated solid sampling graphite tube. In previous work of our group losses of volatile nickel and vanadium compounds have been detected, whereas other nickel and vanadium compounds were thermally stable up to 1300 and 1600 °C, respectively. In order to avoid this problem different chemical modifiers (conventional and permanent) have been investigated. With 400 μg of iridium as permanent modifier, the signal started to drop already after two atomization cycles, possibly because of an interaction of nickel (which is a catalyst poison) with iridium. Twenty micrograms of palladium applied in each determination was found to be optimum for both elements. The palladium was deposited on the platform and submitted to a drying step at 150 °C for 75 s. After that the sample was added onto the platform and submitted to the furnace program. The influence of sample mass on the linearity of the response and on potential measurement errors was also investigated using four samples with different nickel content. For the sample with the lowest nickel concentration the relationship between mass and integrated absorbance was found to be non-linear when a high sample mass was introduced. It was suspected that the modifier had not covered the entire platform surface, which resulted in analyte losses. This problem could be avoided by using 40 μL of 0.5 g L−1 Pd with 0.05% Triton X-100. Calibration curves were established with and without modifier, with aqueous standards, oil-in-water emulsions and the certified reference material NIST SRM 1634c (trace metals in residual fuel oil). The sensitivity for aqueous standards and emulsions was close to that for SRM 1634c, making possible the use of aqueous standards for calibration. The limits of detection and quantification obtained for nickel and vanadium under this condition were found to be 0.02 and 0.06 μg g−1, respectively, for both elements, based on 10 mg of sample. Nickel and vanadium were determined in the samples with (total Ni and V) and without the use of Pd (thermally stable compounds), and the concentration of volatile compounds was calculated by difference. The results were compared with those obtained by high-resolution continuum source graphite furnace atomic absorption spectrometry by emulsion technique; no significant differences were found for total Ni and V at the 95% confidence level according to a Student's t-test.  相似文献   

3.
A procedure for arsenic species fractionation in alga samples (Sargassum fulvellum, Chlorella vulgaris, Hizikia fusiformis and Laminaria digitata) by extraction is described. Several parameters were tested in order to evaluate the extraction efficiency of the process: extraction medium, nature and concentration (tris(hydroxymethyl)aminomethane, phosphoric acid, deionised water and water/methanol mixtures), extraction time and physical treatment (magnetic stirring, ultrasonic bath and ultrasonic focussed probe). The extraction yield of arsenic under the different conditions was evaluated by determining the total arsenic content in the extracts by ICP-AES. Arsenic compounds were extracted in 5 mL of water by focussed sonication for 30 s and subsequent centrifugation at 14,000 × g for 10 min. The process was repeated three times. Extraction studies show that soluble arsenic compounds account for about 65% of total arsenic.

An ultrafiltration process was used as a clean-up method for chromatographic analysis, and also allowed us to determine the extracted arsenic fraction with a molecular weight lower than 10 kDa, which accounts for about 100% for all samples analysed.

Speciation studies were carried out by HPLC–ICP-AES. Arsenic species were separated on a Hamilton PRP-X100 column with 17 mM phosphate buffer at pH 5.5 and 1.0 mL min−1 flow rate. The chromatographic method allowed us to separate the species As(III), As(V), MMA and DMA in less than 13 min, with detection limits of about 20 ng of arsenic per species, for a sample injection volume of 100 μL. The chromatographic analysis allowed us to identify As(V) in Hizikia (46 ± 2 μg g−1), Sargassum (38 ± 2 μg g−1) and Chlorella (9 ± 1 μg g−1) samples. The species DMA was also found in Chlorella alga (13 ± 1 μg g−1). However, in Laminaria alga only an unknown arsenic species was detected, which eluted in the dead volume.  相似文献   


4.
de Jesus A  Silva MM  Vale MG 《Talanta》2008,74(5):1378-1384
A new method for F AAS determination of sodium and potassium in biodiesel using water-in-oil microemulsion as sample preparation is proposed. The method was investigated for biodiesel produced from different sources, as soybean, castor and sunflower oil and animal fat and was also applied for vegetable oils. The optimized condition for microemulsion formation was 57.6% (w/w) of n-pentanol, 20% (w/w) of biodiesel or vegetable oil, 14.4% (w/w) of Triton X-100 and 8% (w/w) of water (aqueous standard of KCl or NaCl in/or diluted HNO3). The optimized instrumental parameters were: aspiration rate of 2 mL min−1 and the flame composition of 0.131 of C2H2/air ratio. For comparison purpose, the determination of sodium and potassium were also carried out according to European norms (EN 14108 and EN 14109, respectively). These norms are applied for determination of sodium and potassium in fatty acid methylic ester samples and consist in the sample dilution using organic solvent and determination by F AAS. The stability of microemulsified aqueous standards and samples was investigated and it was found to be stable for at least 3 days while the organic standard diluted with xylene showed a decrease around of 15% in the analytical signal in 1 h. The limits of detection were 0.1 μg g−1 and 0.06 μg g−1 and the obtained characteristic concentrations were 25 μg L−1 and 28 μg L−1 for sodium and potassium, respectively. The proposed method presented two times better limits of detection and better precision (0.4–1.0%) when compared with the dilution technique (1.5–4.5%). The accuracy of the method was evaluated through recovery tests and comparison with the results obtained by dilution technique. The recoveries ranged from 95% to 115% for biodiesel and 90% to 115% for vegetable oil samples. Comparison between the results obtained for biodiesel by both methods showed no significant differences at the 95% confidence level according to a Student's t-test. This study shows that the proposed method based on microemulsion as sample preparation can be applied as an efficient alternative for sodium and potassium determination in biodiesel samples.  相似文献   

5.
A method has been developed for the determination of cobalt, copper and manganese in green coffee using direct solid sampling electrothermal atomic absorption spectrometry (SS-ET AAS). The motivation for the study was that only a few elements might be suitable to determine the origin of green coffee so that the multi-element techniques usually applied for this purpose might not be necessary. The three elements have been chosen as test elements as they were found to be significant in previous investigations. A number of botanical certified reference materials (CRM) and pre-analyzed samples of green coffee have been used for method validation, and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted acid digestion of the samples as reference method. Calibration against aqueous standards could be used for the determination of Mn and Co by SS-ET AAS, but calibration against solid CRM was necessary for the determination of Cu. No significant difference was found between the results obtained with the proposed method and certified or independently determined values. The limits of detection for Mn, Cu and Co were 0.012, 0.006 and 0.004 μg g−1 using SS-ET AAS and 0.015, 0.13 and 0.10 μg g−1 using ICP OES. Seven samples of Brazilian green coffee have been analyzed, and there was no significant difference between the values obtained with SS-ET AAS and ICP OES for Mn and Cu. ICP OES could not be used as a reference method for Co, as essentially all values were below the limit of quantification of this technique.  相似文献   

6.
The mass fractions of Hg and methylmercury, in two certified reference materials, NIST2710 and DORM-2, have been determined by total and species-specific isotope dilution analysis (IDA), respectively, and uncertainty budgets for each analysis calculated. The mass fraction of Hg in NIST2710 was determined by ID using multicollector sector field inductively coupled plasma mass spectrometry (MC-SF-ICP-MS) whilst the mass fraction of methylmercury in DORM-2 was determined using HPLC coupled with quadrupole ICP-MS.

The extent of equilibration between the spike and the particulate bound mercury compounds was studied temporally by monitoring the 200Hg:199Hg isotope amount ratio and by determining the total amount of Hg in the liquid phase. For the NIST2710 complete equilibration was only achieved when concentrated HNO3 in combination with a microwave digestion was employed, and good agreement between the found (31.7±4.0 μg g−1, expanded uncertainty k=2) and certified (32.6±1.8 μg g−1) values was obtained. For DORM-2 complete equilibration of methylmercury between the liquid and solid phases was achieved when using 50:50 H2O:CH3OH (v/v) and 0.01% 2-mercaptoethanol as the solvent. Even though only 50% of the analyte was extracted into the liquid phase, complete equilibration was achieved, hence, the found methylmercury mass fraction (4.25±0.47 μg g−1, expanded uncertainty k=2) was in good agreement with the certified value (4.47±0.32 μg g−1).  相似文献   


7.
Pulsed amperometric detection of furan compounds in transformer oil   总被引:1,自引:0,他引:1  
The failure of high voltage transformers can result in significant cost and supply implications to both power supplier and consumer alike and in extreme cases may result in explosion, serious injury or death. Transformer failure can be predicted by measuring furanics present in the oil, produced by the thermolytic breakdown of cellulosidic insulators. Failing units can have furanic levels of up to 10 μg ml−1. The use of pulsed amperometric detection (PAD) to measure furanics in transformer oils in real time is reported here. Oils were examined by pre-extraction or direct suspension in aqueous measurement solution or by solubilisation and direct PAD measurement in organic solvents. Linear relationships between PAD response and furanic concentration was found for 2-furaldehyde and furfuryl alcohol (F-OH) across the range of 0–10 μg ml−1, with PAD proving most sensitive to the latter compound. PAD was performed directly in the organic phase in t-butanol with 0.1 M tetramethyl ammonium hydroxide, with aged oils containing >2 μg ml−1 of 2-furaldehyde yielding data within close agreement (<9%) of a standard chromatographic method. The simplicity and rapidity of this method offers the power transmission industry a means of monitoring furanic levels in transformers in real time, thereby reducing the risk of uncontrolled transformer failure.  相似文献   

8.
Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g− 1) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g− 1 for As, from 0.068 to 2.85 μg g− 1 for Cd, between 26.4 and 90.7 μg g− 1 for Cr, from 9.3 to 40.0 μg g− 1 for Ni and between 16.3 and 183.0 μg g− 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.  相似文献   

9.
Commercial non-food packaging materials of four different matrices (paper, low density polyethylene (LDPE), polyethylene-polypropylene (PE-PP) and high density polyethylene (HDPE)) were examined for the content of Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U. The examined samples (0.17–0.35 g) were digested in HNO3 and H2O2 (papers, LDPE and PE-PP) and in HNO3, H2SO4 and H2O2 (HDPE) using microwave assisted high pressure system. The inductively coupled plasma-time of flight-mass spectrometry (ICP-TOFMS) has been employed as the detection technique. All measurements were carried out using internal standardization. Yttrium and rhodium (50 ng g−1) were used as internal standards. The detection and quantification limits obtained were in the range of 0.005 ng g−1 (52Cr) to 0.51 ng g−1 (66Zn) and 0.015 μg g−1 (52Cr) to 2.02 μg g−1 (66Zn) of dry mass, respectively. The evaluated contents (mg kg−1) of particular elements in the examined materials were as follows: 0.22–219; <1.05–9.03; 1.25–112; <2.02–449; <0.98–<1.30; <0.36–2.06; <0.29–113; <0.22–44.1; <0.06–57.4; <0.66–<0.88; <0.08–0.24; <0.13–1222 and <0.08–0.44 for Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U, respectively.  相似文献   

10.
A literature review on the determination of trace elements in crude oil and heavy molecular mass fractions (saturates, aromatics, resins and asphaltenes) by ICP-MS, ICP OES and AAS is presented. Metal occurrences, forms and distributions are examined as well as their implications in terms of reservoir geochemistry, oil refining and environment. The particular analytical challenges for the determination of metals in these complex matrices by spectrochemical techniques are discussed. Sample preparation based on ashing, microwave-assisted digestion and combustion decomposition procedures is noted as robust and long used. However, the introduction of non-aqueous solvents and micro-emulsions into inductively coupled plasmas is cited as a new trend for achieving rapid and accurate analysis. Separation procedures for operationally defined fractions in crude oil are more systematically applied for the observation of metal distributions and their implications. Chemical speciation is of growing interest, achieved by the coupling of high efficiency separation techniques (e.g., HPLC and GC) to ICP-MS instrumentation, which allows the simultaneous determination of multiple organometallic species of geochemical and environmental importance.  相似文献   

11.
A supported liquid membrane system has been developed for the extraction of vanillin from food samples. A porous PTFE membrane is impregnated with an organic solvent, which forms a barrier between two aqueous phases. The analyte is extracted from a donor phase into the hydrophobic membrane and then back extracted into a second aqueous solution, the acceptor. The determination (100–1400 μg ml−1 vanillin) was performed using a PVC-graphite composite electrode versus Ag/AgCl/3MKCl at +0.850 V placed in a wall-jet flow cell as amperometric detector. The solid sample is directly placed in the membrane unit without any treatment, and the analyte was extracted from the sample, passes through the membrane and conduced to the flow cell by the acceptor stream. The limit of detection (3σ) was 44 μg ml−1. The method was applied to the determination of vanillin (9–606 μg g−1) in food samples.  相似文献   

12.
The importance of the interfacial rheology in determining the stability of water-in-Buchan crude oil emulsions has been demonstrated in part 1 of this series of papers (R.A. Mohammed, A.I. Bailey, P.F. Luckham and S.E. Taylor, Colloids Surfaces A: Physicochem. Eng. Aspects, 80(1993)223). In part 2, interfacial tensions of crude oil, and solutions of asphaltenes and resins in a model oil have been investigated. Surface pressure vs. area (Π—A) curves of monolayers of asphaltenes, resins and their mixtures have been established. In its dependence on the ratio of resins to asphaltenes, the pseudostatic dilatational modulus has high values for low resin-to-asphaltene ratios and low values for high resin-to-asphaltene ratios. This is expected to throw light on the cause of the enhanced stability of water-in-crude oil emulsions.  相似文献   

13.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

14.
A simple method for the simultaneous determination of chlorophenoxy acid herbicides and their esters in soil is presented. Compounds studied are: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB), 2,4-dichlorophenoxyacetic-1-butyl ester (2,4-D-1-butyl ester), and 2,4-dichlorophenoxyacetic-1-methyl ester (2,4-D-1-methyl ester).

The chromatographic analysis was carried out by HPLC, after ultrasonic extraction, on a C18 packed capillary column with temperature gradient, large injection volumes and UV detection at 232 nm. Samples were spiked with amounts between 2.5 and 6.0 μg g−1 of each herbicide; recoveries obtained were between 72 and 97% (n=3 for each spiked level) and detection limits were between 0.3 and 0.5 μg g−1.

Application of this procedure to the analysis of herbicides in ester and acid forms showed the effectiveness of the methodology proposed.  相似文献   


15.
The aim of this work was to develop and validate a simple and sensitive analytical method for determining enrofloxacin (EFX) and ciprofloxacin (CFX) in equine plasma and endometrial tissue samples, as a precursor to conducting pharmacokinetic/pharmacodynamic studies on equine endometritis This was achieved in the form of a liquid chromatographic procedure, with fluorometric detection, which also gave good separation of other fluoroquinolones including marbofloxacin (MFX), danofloxacin (DFX) and ofloxacin (OFX). Analytes were separated on a C18 reversed phase column using an acidified mobile phase. The exact composition of the mobile phase differed for plasma (16% acetonitrile:methanol [13:1,v/v] 84% water containing 0.4% triethylamine and 0.4% phosphoric acid [35%]) and endometrial tissue (14% acetonitrile, 86% water, without methanol) samples. EFX and CFX were both detected at excitation and emission wavelengths of 294 and 500 nm, respectively. Prior to chromatography, EFX and CFX were purified by solid phase extraction from plasma, and a combination of solvent/solid phase extraction from endometrial tissue.

Mean absolute recoveries for EFX and CFX from plasma were 94.1 and 78.0%, respectively, and from endometrial tissue, 78.0 and 57.8%, respectively, with a percentage residual standard deviation (%R.S.D.) <10% in each case. Mean relative recoveries for EFX and CFX from plasma were 91.3 and 119.4%, respectively, and from endometrial tissue, 80.2 and 108.0%, respectively, with a %R.S.D. <20% in each case.

Standard curves constructed using blank plasma and endometrial tissue samples, spiked with authentic EFX and CFX in the ranges 0.005–10.0 μg mL−1 and 0.05–10.0 μg g−1, respectively, all showed acceptable linearity with correlation coefficients, r2 ≥ 0.977. Mean intra- and inter-day precision (expressed as %R.S.D.) was <6 and <13%, respectively, with an associated accuracy (expressed as percentage relative error, %R.E.) of <20% for both analytes in both matrices. Acceptable precision and accuracy was also demonstrated at the pre-assigned LOQs of 0.005 μg mL−1 for both EFX and CFX in plasma, and 0.05 μg g−1 for both drugs in endometrial tissue. EFX and CFX were stable in both plasma and endometrial tissue for at least 60 days at −20 °C.  相似文献   


16.
A procedure for the determination of As, Pb, Se and Sn in sediment slurries by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The slurry, 1 mg ml−1, is prepared by mixing the sample ground to a particle size 50 μm with 5% v/v nitric and 1% v/v hydrofluoric acids in an ultrasonic bath. The slurry was homogenized with a constant flow of argon in the autosampler cup, just before transferring an aliquot to the graphite furnace. The tube was treated with Ru as a permanent modifier, and an optimized mass of 1 μg of NaCl was added as a physical carrier. The pyrolysis temperature was optimized through pyrolysis curves, and a compromised temperature of 800 °C was used; the vaporization temperature was 2300 °C. The effect of different acid concentrations in the slurry on the analyte signal intensities was also evaluated. The accuracy of the method was assured by the analysis of certified reference sediments MESS-2, PACS-2 and HISS-1 from the National Research Council Canada, SRM 2704 and SRM 1646a from the National Institute of Standards and Technology and RS-4 from a round robin test, using external calibration with aqueous standards prepared in the same medium as the slurries. The obtained concentrations were in agreement with the certified values according to the Student's t-test for a confidence level of 95%. The detection limits in the samples were: 0.17 μg g−1 for As; 0.3 μg g−1 for Pb; 0.05 μg g−1 for Se and 0.28 μg g−1 for Sn. The precision found for the different sediment samples, expressed as R.S.D. was 1–8% for As, 2–9% for Pb, 6–12% for Se and 3–8% for Sn (n=5).  相似文献   

17.
Abu-Elgheit MA  Ijam MJ 《Talanta》1982,29(12):1131-1134
Solvent extraction of asphalt from pavement mixtures is a technique used to study the change in asphalt during service. Rheological measurements indicate that asphalts recovered from trichloroethylene or trichloroethane are markedly hardened. Compositional studies on asphaltic fractions reveal a notable decrease in saturates, naphthenes, H, N, Ni and V, and increase in polar aromatics and asphaltenes along with incorporation of Cl in all fractions. These structural changes are responsible for the hardening of the asphalt and are interpreted in terms of cyclization of saturates, aromatization of naphthenes, coupling of free radicals with neutral species to give a high content of asphaltenes, and in terms of loss of the relatively volatile Ni and V porphyrins during the extraction—recovery process.  相似文献   

18.
A simple, robust and reliable analytical procedure for the determination of Al, Ca, Fe, K, Li, Mg, Mn, Na, Sr, Ti, and Zn in peat and plant materials by inductively coupled plasma-optical emission spectrometry (ICP-OES) was developed. A microwave heated high pressure autoclave was used to digest powdered sample aliquots (approximately 200 mg) with different acid mixtures including nitric acid (HNO3), tetrafluoroboric acid (HBF4) and hydrogen peroxide (H2O2). The optimized acid mixture for digestion of plant and peat samples consisted of 3 mL HNO3 and 0.1 mL HBF4, in addition to H2O2 which was sub-boiled into the PTFE digestion tubes during heating of the autoclave. Using HNO3 alone, recoveries of Al and Ti were too low by 40 and 160%, respectively, because HNO3 could not fully liberate the analytes of interest from the silicate fraction of the plant and peat matrix. However, for all other elements (such as Mn, Sr, and Zn), the use of HBF4 was less critical. The accuracy of the analytical procedure developed was evaluated with peat and plant reference materials of different origin and composition. The ICP-OES instrument was optimized using solutions of plant reference materials considering RF power, nebulizer pressure, auxiliary gas flow and rinse time. Scandium was used as an online internal standard (IS) as it provided accurate results and showed less than 3% drift in sensitivity over time which was lower compared to other potential IS such as Rh (20%) and In (6%). The combination of most sensitive and less sensitive wavelengths allowed to obtain low detection limits and highest possible dynamic range. The achieved procedure detection limits ranged from 0.05 μg g−1 (Li) to 15 μg g−1 (Ca) and allowed a precise quantification of all elements. Comparative X-ray fluorescence spectrometric measurements of solid peat and plant samples generally agreed well with results obtained by digestion/ICP-OES. To overcome interferences caused by Na, K, and Li, a solution of 10 μg g−1 CsCl2 was successfully used as an ionization buffer. The good agreement between the found and certified concentrations in plant and peat reference materials indicates that the developed analytical procedure is well suited for further studies on the fate of major elements in plant and peat matrices.  相似文献   

19.
The dynamic interfacial tensions (IFTs) of two novel zwitterionic surfactants with different hydrophobic groups, alkyl sulfobetaine (ASB), and xylyl substituted alkyl sulfobetaine (XSB), against kerosene, crude oil, and model oils containing crude oil fractions, such as resins, asphaltenes, saturates, aromatics, and acidic fractions, have been investigated by a spinning drop interfacial tensiometer. The experimental results show that XSB solutions show higher interfacial activity than ASB against kerosene because of the larger size of the hydrophobic part of the XSB molecule. The petroleum acids have high interfacial activity and can adsorb onto the interface. For ASB solutions, the synergism mixed adsorption of betaine and acid molecules lowers IFT values. On the one hand, the partly displacement of XSB molecules by petroleum acid at the interface results in the increase of IFTs. Therefore, resins, aromatics, and acidic fractions show strong effects on IFTs of betaine solutions. On the other hand, asphaltenes and saturates have little effect on interfacial properties. Moreover, the hydrophilic part of the betaine molecule at the interface may vary its orientation from vertical to flat with aging time. Therefore, the dynamic IFT curves of ASB solutions against model oils show “V” shape for resins, aromatics, and acidic fractions.  相似文献   

20.
The volatile oil of the roots of Cynanchum stauntonii was examined by gas chromatography–mass spectrometry (GC–MS). Thirty-eight constituents were identified. (E,E)-2,4-Decadienal, 3-efhyl-4-methypentanol, 5-pentyl-3H-furan-2-one, (E,Z)-2,4-decadienal and 2(3H)-furanone,dihydro-5-pentyl were found to be the major components. The volatile oil exhibited the activities against influenza virus in vitro (IC50s = 64 μg/ml). In in vivo experiment, it prevented influenza virus-induced deaths in a dose-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号